Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-16T22:20:43.309Z Has data issue: false hasContentIssue false

Psychophysiological Studies of Unattended Information Processing

Published online by Cambridge University Press:  10 April 2014

Fernando Valle-Inclán*
Affiliation:
University of La Coruña
Carmen de Labra*
Affiliation:
University of La Coruña
Milagros Redondo*
Affiliation:
University of La Coruña
*
Correspondence to any of the authors concerning this article should be addressed to the Departamento de Psicología. Campus de Elviña. 15071 La Coruña (Spain). E-mail addresses: fval@udc.es, clabra@mail2.udc.es, mredon@udc.es
Correspondence to any of the authors concerning this article should be addressed to the Departamento de Psicología. Campus de Elviña. 15071 La Coruña (Spain). E-mail addresses: fval@udc.es, clabra@mail2.udc.es, mredon@udc.es
Correspondence to any of the authors concerning this article should be addressed to the Departamento de Psicología. Campus de Elviña. 15071 La Coruña (Spain). E-mail addresses: fval@udc.es, clabra@mail2.udc.es, mredon@udc.es

Abstract

The article describes the general methods and some of the results obtained in the Psychophysiology Laboratory of the University of La Coruña. The paper covers our research on the Simon effect and accessory effect, although it is not a review of the literature. The research strategy we followed is built around the use of lateralized motor potentials recorded from scalp. These measures allow observing the way responses are selected and when they are selected, providing an invaluable tool to study response interference and to split reaction time into two halves. The research on the Simon effect concludes that interference during response selection is critical in the Simon effect but it is dubious whether this process should be considered as automatic and stimulus-driven, as is widely accepted. The experiments with the accessory effect indicate that facilitation is produced before response selection is over, which ends a long controversy about the locus of the accessory effect.

El artículo describe el método y algunos de los resultados obtenidos en el laboratorio de Psicofisiología de la Universidad de La Coruña. El trabajo abarca nuestra investigación sobre el efecto Simon y sobre el efecto accesorio, aunque no es una revisión del corpus teórico. La estrategia de investigación seguida en estos experimentos se basa en la utilización de potenciales motores lateralizados que se registran sobre cuero cabelludo. Estas medidas permiten observar cómo y cuándo se seleccionan las respuestas, proporcionando una valiosísima herramienta para estudiar la interferencia de respuesta y para partir el tiempo de reacción en dos mitades. Nuestra investigación sobre el efecto Simon concluye que la interferencia durante la selección de respuesta es crucial en el efecto Simon, pero no está tan claro si este proceso debe considerarse automático y guiado por el estímulo, como defienden la mayoría de las teorías actuales. Los experimentos con el efecto accesorio indican que la facilitación se produce antes de que termine la selección de respuesta, lo que acaba con una larga controversia acerca del locus del efecto accesorio.

Type
Research trends
Copyright
Copyright © Cambridge University Press 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coles, M.G.H. (1989). Modern mind-brain reading: Psychophysiology, physiology, and cognition. Psychophysiology, 26, 251269.CrossRefGoogle ScholarPubMed
Coles, M.G.H., & Gratton, G. (1986). Cognitive psychophysiology and the study of states and processes. In Hockey, G.R.J., Gaillard, A.W.K., & Coles, M.G.H. (Eds.), Energetics and human information processing (pp. 409424). Dordrecht, The Netherlands: Martinus Nijhoff.CrossRefGoogle Scholar
Craft, J.L., & Simon, J.R. (1970). Processing symbolic information from a visual display: Interference from an irrelevant directional cue. Journal of Experimental Psychology, 83, 415420.CrossRefGoogle ScholarPubMed
de Jong, R., Liang, C., & Lauber, E. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus-response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20, 731750.Google ScholarPubMed
de Jong, R., Wierda, M., Mulder, G., & Mulder, L.J.M. (1988). Use of partial information in response processing. Journal of Experimental Psychology: Human Perception and Performance, 14, 682692.Google ScholarPubMed
Eriksen, B.A., & Eriksen, C.W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception and Psychophysics, 16, 143149.CrossRefGoogle Scholar
Gratton, G., Coles, M.G.H., & Donchin, E. (1983). A new method for off-line removal of ocular artifacts. Electroencephalograhyand Clinical Neurophysiology, 55, 468484.CrossRefGoogle Scholar
Gratton, G., Coles, M.G.H., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121, 44804506.Google ScholarPubMed
Grice, G.R., Canham, L., & Boroughs, J.M. (1984). Combination rule for redundant information in reaction time tasks with divided attention. Perception & Psychophysics, 36, 451463.CrossRefGoogle Scholar
Hackley, S.A., & Valle-Inclán, F. (1998). Automatic alerting does not speed late motoric processes in a reaction time task. Nature, 391, 786788.CrossRefGoogle ScholarPubMed
Hackley, S.A., & Valle-Inclán, F. (1999). Accessory stimulus effects on response selection: Does arousal speed decision making? Journal of Cognitive Neuroscience, 11, 321329.CrossRefGoogle ScholarPubMed
Hasbroucq, T., & Guiard, Y. (1991). Stimulus-response compatibility and the Simon effect: Toward a conceptual clarification. Journal of Experimental Psychology: Human Perception and Performance, 17, 246266.Google Scholar
Hedge, A., & Marsh, N.W.A. (1975). The effects of irrelevant spatial correspondences on two-choice response-time. Acta Psychologica, 39, 427439.CrossRefGoogle ScholarPubMed
Hillyard, S.A., Hink, R.F., Schwent, V.L., & Picton, T.W. (1973). Electrical signals of selective attention in the human brain. Science, 182, 177180.CrossRefGoogle Scholar
Hommel, B. (1993a). The relationship between stimulus processing and response selection in the Simon task: Evidence for a temporal overlap. Psychological Research/Psychologische Forschung, 55, 280290.CrossRefGoogle Scholar
Hommel, B. (1993b). Inverting the Simon effect by intention: Determinants of direction and extent of effects of irrelevant spatial information. Psychological Research/Psychologische Forschung, 55, 270279.CrossRefGoogle Scholar
Hommel, B. (1994). Spontaneous decay of response-code activation. Psychological Research/Psychologische Forschung, 56, 261268.CrossRefGoogle ScholarPubMed
Hommel, B. (1995). Stimulus-response compatibility and the Simon effect: Toward an empirical clarification. Journal of Experimental Psychology: Human Perception and Performance, 21, 764775.Google Scholar
Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility: A model and taxonomy. Psychological Review, 97, 253270.CrossRefGoogle Scholar
Kornblum, S., Stevens, G.T., Requin, J., & Whipple, A. (1999). The effects of irrelevant stimuli: 1. The time course of stimulus-stimulus and stimulus-response consistency effects with Stroop-like stimuli, Simon-like tasks, and their factorial combinations. Journal of Experimental Psychology: Human Perception and Performance, 25, 688714.Google Scholar
Lu, C.-H., & Proctor, R.W. (1995). The influence of irrelevant location information on performance: A review of the Simon and spatial Stroop effects. Psychonomic Bulletin & Review, 2, 174207.CrossRefGoogle ScholarPubMed
McCarthy, G., & Donchin, E. (1981). A metric for thought: A comparison of P300 latency and reaction time. Science, 211, 7780.CrossRefGoogle ScholarPubMed
Nickerson, R.S. (1973). Intersensory facilitation of reaction time: Energy summation or preparation enhancement? Psychological Review, 80, 489509.CrossRefGoogle ScholarPubMed
Osman, A., Bashore, T.R., Coles, M.G.H., Donchin, E., & Meyer, D.E. (1992). On the transmission of partial information:Inferences from movement-related brain potentials. Journal of Experimental Psychology: Human Perception and Performance, 18, 217232.Google ScholarPubMed
Posner, M.I. (1978). Chronometric explorations of the mind. Hillsdale, NJ: Erlbaum.Google Scholar
Proctor, R.W., & Lu, C.-H. (1999). Processing irrelevant location information: Practice and transfer effects in choice-reaction tasks. Memory & Cognition, 27, 6377.CrossRefGoogle ScholarPubMed
Sanders, A.F. (1980). Stage analysis of reaction processes. In Stelmach, G.E. & Requin, J. (Eds.), Tutorials in motor behavior (pp. 331354). Amsterdam: North Holland.CrossRefGoogle Scholar
Shiu, L.-P., & Kornblum, S. (1999). Stimulus-response compatibility effects in go-no-go tasks: A dimensional overlap account. Perception & Psychophysics, 61, 16131623.CrossRefGoogle ScholarPubMed
Simon, J.R. (1990). The effects of an irrelevant directional cue on human information processing. In Proctor, R.W. & Reeve, T.G. (Eds.), Stimulus-Response compatibility: An integrated perspective (pp. 3188). Amsterdam: North-Holland.Google Scholar
Simon, J.R., & Acosta, E. Jr., (1982). Effect of irrelevant information on the processing of relevant information: Facilitation and/or interference? The influence of experimental design. Perception & Psychophysics, 31, 383388.CrossRefGoogle ScholarPubMed
Simon, J.R., & Craft, J.L. (1970). Effects of an irrelevant auditory stimulus on visual choice reaction time. Journal of Experimental Psychology, 86, 272274.CrossRefGoogle ScholarPubMed
Simon, J.R., Hinrichs, J.V., & Craft, J.L. (1970).Auditory S-R compatibility: Reaction time as a function of ear-hand correspondence and ear-response-location correspondence. Journal of Experimental Psychology 86, 97102.CrossRefGoogle ScholarPubMed
Simon, J.R., & Rudell, A.P. (1967). Auditory S-R compatibility: The effect of an irrelevant cue on information processing. Journal of Applied Psychology, 51, 300304.CrossRefGoogle ScholarPubMed
Simon, J.R., & Small, A.M. Jr., (1969). Processing auditory information: Interference from an irrelevant cue. Journal of Applied Psychology, 53, 433435.CrossRefGoogle ScholarPubMed
Smid, H.G.O.M., Mulder, G., & Mulder, L.J.M. (1987). The continuous flow model revisited: Perceptual and motor aspects. In Johnson, R.E., Rohrbaugh, J.W., & Parasuraman, R. (Eds.), Current trends in event-related potentials research. Electroencephalography and Clinical Neurophysiology (Suppl. 40) (pp. 270278). Amsterdam: Elsevier.Google Scholar
Stein, B.E., London, N., Wilkinson, L.K., & Price, D.D. (1996). Enhancement of perceived visual intensity by auditory stimuli: A psychophysical analysis. Journal of Cognitive Neuroscience, 8, 497506.CrossRefGoogle ScholarPubMed
Stern, J.A., Walrath, L.C., & Goldstein, R. (1984). The endogenous eyeblink. Psychophysiology, 21, 2233.CrossRefGoogle ScholarPubMed
Stroop, J.R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643662.CrossRefGoogle Scholar
Umiltà, C., Rubichi, S., & Nicoletti, R. (1999). Facilitation and interference components in the Simon effect. Archives Italiennes de Biologie, 137, 139149.Google ScholarPubMed
Valle-Inclán, F. (1996a). The locus of interference in the Simon effect: An ERP study. Biological Psychology, 43, 147162.CrossRefGoogle ScholarPubMed
Valle-Inclán, F. (1996b). The Simon effect and its reversalstudied with ERPs. International Journal of Psychophysiology, 23, 4153.CrossRefGoogle Scholar
Valle-Inclán, F., Hackley, S.A., & de Labra, C. (2000). Expectancies and spatial coding in the Simon effect. Manuscript in preparation.Google Scholar
Valle-Inclán, F., Hackley, S.A., de Labra, C., & Alvarez, A. (1999a). Early visual processing during binocular rivalry studied with visual evoked potentials. NeuroReport, 10, 2125.CrossRefGoogle ScholarPubMed
Valle-Inclán, F., Hackley, S.A., de Labra, C., & Alvarez, A. (1999b). Rivalry related potential does not originate in striate cortex. Psychophysiology, 36, supp. 1, S117.Google Scholar
Valle-Inclán, F., Hackley, S.A., & McClay, B. (1998). Sequential effects with respect to the Simon effect. Journal of Psychophysiology, 12, 404.Google Scholar
Valle-Inclán, F., & Redondo, M. (1998). On the automaticity of ipsilateral response activation in the Simon effect. Psychophysiology, 35, 366371.CrossRefGoogle ScholarPubMed
Verleger, R. (1997). On the utility of P3 latency as an index of mental chronometry. Psychophysiology, 34, 131156.CrossRefGoogle ScholarPubMed