Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-17T04:45:33.602Z Has data issue: false hasContentIssue false

The Contingent Negative Variation Laterality and Dynamics in Antisaccade Task in Normal and Unmedicated Schizophrenic Subjects

Published online by Cambridge University Press:  10 January 2013

Anna V. Kirenskaya*
Affiliation:
Serbsky National Research Centre for Social and Forensic Psychiatry (Russia)
Vadim V. Myamlin
Affiliation:
Serbsky National Research Centre for Social and Forensic Psychiatry (Russia)
Vladimir Y. Novototsky-Vlasov
Affiliation:
Serbsky National Research Centre for Social and Forensic Psychiatry (Russia)
Mikhail V. Pletnikov
Affiliation:
Johns Hopkins University School of Medicine (USA)
Inesa B. Kozlovskaya
Affiliation:
State Research Centre RF Institute for Biomedical Problems (Russia)
*
Correspondence concerning this article should be addressed to Anna V. Kirenskaya. Serbsky National Research Centre for Social and Forensic Psychiatry, Kropotkinsky by-st. 23, 119992, Moscow (Russia). Phone: +7-4997442159. Fax: +7-4956372275. E-mail: neuro11@yandex.ru

Abstract

Contingent negative variation (CNV) topography, hemispheric asymmetry and time-course were investigated in healthy subjects and non-medicated paranoid schizophrenic patients in two antisaccade paradigms with the short (800-1000 ms) and long (1200-1400 ms) durations of the fixation period. EEG and electrooculogram (EOG) were recorded. Saccade characteristics and mean amplitudes of slow cortical potentials time-locked to peripheral target were analyzed in 23 healthy volunteers and 19 schizophrenic patients. Compared to healthy control subjects, schizophrenic patients had significantly slower antisaccades and committed significantly more erroneous saccades in the both antisaccade tasks. The prolongation of the fixation period resulted in noticeable decrease of error percent in patients group. The analysis of CNV time-course has revealed two distinct stages in both groups. The early CNV stage was represented by a negative wave with the maximal amplitude over midline fronto-central area, and the late stage was characterized by increased CNV amplitude at the midline and left parietal electrode sites. In healthy subjects the simultaneous activation of frontal and parietal areas was observed in the paradigm with the shorter fixation interval; the increase of the fixation period produced consecutive activation of these areas. Schizophrenic patients' CNV amplitude was generally smaller than that of healthy subjects. The most pronounced between-group differences of the negative shift amplitude were revealed at frontal electrode sites during the early CNV stage in both modifications of the antisaccade task. The deficit of frontal activation revealed in patients at the early stage of antisaccade preparatory set in both antisaccadic paradigms may be related to pathogenesis of paranoid schizophrenia.

Se ha investigado la topografía de la variación contingente negativa (CNV), su curso temporal, y asimetría hemisférica en sujetos normales y en pacientes esquizofrénicos paranoides no medicados durante dos paradigmas de movimientos antisacádicos con duración corta (800-1000 ms) y larga (1200-1400 ms) del periodo de fijación. Se registraron el EEG y electro-oculograma. Las características de los movimientos sacádicos y las amplitudes medias de los potenciales corticales lentos relacionados a objetivos periféricos se analizaron en 23 voluntarios sanos y 19 pacientes esquizofrénicos. Comparados con el grupo sano control, los pacientes esquizofrénicos tuvieron movimientos antisacádicos significativamente más lentos y cometieron significativamente más movimientos sacádicos erróneos en ambas tareas antisacádicas. La prolongación del periodo de fijación resultó en un decremento notable del porcentaje de errores en el grupo de pacientes. El análisis del curso temporal de la CNV ha revelado dos etapas distintas en ambos grupos. La etapa temprana de la CNV estuvo representada por una onda negativa con amplitudes máximas en regiones fronto-centrales de la línea media y la etapa tardía estuvo caracterizada por un incremento de la amplitud de la CNV en electrodos parietales izquierdos y de la línea media. En sujetos sanos se observó activación simultánea de áreas parietales y frontales durante el paradigma de intervalo de fijación corto; el incremento del periodo de fijación produjo activación consecutiva de estas áreas. La amplitud de la CNV de pacientes esquizofrénicos fue generalmente menor que la de los sujetos sanos. Las diferencias más pronunciadas entre-grupos en la amplitud de la deflección negativa fueron evidentes en electrodos frontales durante la etapa temprana de la CNV en ambas modificaciones de la tarea antisacádica. El déficit de la activación frontal demostrado en pacientes durante el estado temprano de la preparación antisacádica en ambos paradigmas puede estar relacionado con la patogénesis de la esquizofrenia paranoide.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amador, N., Schlag-Rey, M., & Schlag, J. (2004). Primate antisaccade. II. Supplementary eye field neuronal activity predicts correct performance. Journal of Neurophysiology, 91(4), 16721689. doi:10.1152/jn.00138.2003CrossRefGoogle ScholarPubMed
Andersen, R. A., Brotchie, P. R., & Mazzoni, P. (1992). Evidence for the lateral intraparietal area as the parietal eye field. Current Opinion in Neurobiology, 2(6), 840846. doi:10.1016/0959-4388(92)90143-9CrossRefGoogle ScholarPubMed
Anderson, T. J., Jenkins, I. H., Brooks, D. J., Hawken, M. B., Frackowiak, R. S., & Kennard, C. (1994). Cortical control of saccades and fixation in man. A PET study. Brain. 117(5), 10731084. doi:10.1093/brain/117.5.1073CrossRefGoogle Scholar
Annett, M. (1970). A classification of hand preference by association analysis. British Journal of Psychology, 61, 303321. doi:10.1111/j.2044-8295.1970.tb01248.xCrossRefGoogle ScholarPubMed
Annett, M., & Kilshaw, D. (1982). Mathematical ability and lateral asymmetry. Cortex 18(4), 547568.CrossRefGoogle ScholarPubMed
Astafiev, S. V., Shulman, G. L., Stanley, C. M., Snyder, A. Z., Van Essen, D. C., & Corbetta, M. (2003). Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. The Journal of Neuroscience, 23, 46894699.CrossRefGoogle ScholarPubMed
Barash, S., & Zhang, M. (2006). Switching of sensorimotor transformations: antisaccades and parietal cortex. Novartis Foundation Symposium, 270, 5971.CrossRefGoogle ScholarPubMed
Bares, M., Nestrasil, I., & Rektor, I. (2007). The effect of response type (motor output versus mental counting) on the intracerebral distribution of the slow cortical potentials in an externally cued (CNV) paradigm. Brain Research Bulletin, 71, 428435.doi:10.1016/j.brainresbull.2006.10.012CrossRefGoogle Scholar
Barret, G., Shibasaki, H., & Neshige, R. (1986). Cortical potentials preceding voluntary movement: evidence for three periods of preparations in man. Electroencepholography and Clinical Neurophysiology, 63, 327339.CrossRefGoogle Scholar
Berman, A. (1971). The problem of assessing cerebral dominance and its relationship to intelligence. Cortex 7(4), 372386.CrossRefGoogle ScholarPubMed
Berman, K. (2002). Functional neuroimaging in schizophrenia. In Davis, K. L., Charney, D. S., Coyle, J. T., & Nemeroff, C. (Eds.), Neuropsychopharmacology: The fifth generation of progress (pp.745746). Philadelphia, PA: Lippincott, Williams & Wilkins.Google Scholar
Broerse, A., Crawford, T. J., & den Boer, J. A. (2001). Parsing cognition in schizophrenia using saccadic eye movements: a selective overview. Neuropsychologia, 39, 742756. doi:10.1016/S0028-3932(00)00155-XCrossRefGoogle ScholarPubMed
Brown, M. R., Vilis, T., & Everling, S. (2007). Frontoparietal activation with preparation for antisaccades. Journal of Neurophysiology, 98(3), 17511762. doi:10.1152/jn.00460.2007CrossRefGoogle ScholarPubMed
Brunia, C.H. (1999). Neural aspects of anticipatory behavior. Acta Psychologica, 101, 213242. doi:10.1016/S0001-6918(99)00006-2CrossRefGoogle ScholarPubMed
Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 147. doi:10.1162/08989290051137585CrossRefGoogle Scholar
Camchong, J., Dyckman, K. A., Austin, B. P., Clementz, B. A., & McDowell, J. E. (2008). Common neural circuitry supporting volitional saccades and its disruption in schizophrenia patients and relatives. Biological Psychiatry, 64, 10421050.doi:10.1016/j.biopsych.2008.06.015CrossRefGoogle ScholarPubMed
Carter, C. S., Botvinick, M. M., & Cohen, J. D. (1999). The contribution of the anterior cingulate cortex to executive processes in cognition. Reviews in the Neurosciences, 10(1), 4957. doi:10.1515/REVNEURO.1999.10.1.49Google Scholar
Casey, B. J., Thomas, K. M., Welsh, T. F., Badgaiyan, R. D., Eccard, C. H., Jennings, J. R., & Crone, E. A. (2000). Dissociation of response conflict, attentional selection, and expectancy with functional magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 97(15), 87288733. doi:10.1073/pnas.97.15.8728Google Scholar
Chafee, M. V., & Goldman-Rakic, P. S. (2000). Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. Journal of Neurophysiology, 83(3), 15501566.CrossRefGoogle ScholarPubMed
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201215. doi:10.1038/nrn755CrossRefGoogle ScholarPubMed
Cui, R. G., Eqkher, A., Huter, D., Lang, W., Lindinger, G., & Deecke, L. (2000). High resolution spatiotemporal analysis of the contingent negative variation in simple or complex motor tasks and a non-motor task. Clinical Neurophysiology, 111, 18471859. doi:10.1016/S1388-2457(00)00388-6Google Scholar
Curtis, C. E., & D'Esposito, M. (2003). Success and failure suppressing reflexive behavior. Journal of Cognitive Neuroscience, 15(3), 409418. doi:10.1162/089892903321593126CrossRefGoogle ScholarPubMed
Doricchi, F., Perani, D., Incoccia, C., Grassi, F., Cappa, S. F., Bettinardi, V., … Fazio, F. (1997). Neural control of fast-regular saccades and antisaccades: an investigation using positron emission tomography. Experimental Brain Research, 116(1), 5062. doi:10.1007/PL00005744CrossRefGoogle ScholarPubMed
Doty, R. W. (1989). Schizophrenia: a disease of interhemispheric and brainstem levels? Behavioral Brain Research, 34(1–2), 133.CrossRefGoogle ScholarPubMed
Dvirsky, A. E. (1983). Clinical manifestations of schizophrenia in right-handed and left-handed patients. Zhurnal Nevropatologii i Psichiatrii im, 83(5), 724728.Google Scholar
Evdokimidis, I., Mergner, T., & Lucking, E. N. (1992). Dependence of presaccadic cortical potentials on the type of saccadic eye movement. Electroencepholography and Clinical Neurophysiology, 83, 179191. doi:10.1016/0013-4694(92)90143-6Google Scholar
Evdokimidis, I., Smyrnis, N., Constantinidis, T. S., Gourtzelidis, P., & Papageorgiou, C. (2001). Frontal-parietal activation differences observed before the execution of remembered saccades: an event-related potentials study. Cognitive Brain Research, 12(1), 8999. doi:10.1016/S0926-6410(01)00037-4CrossRefGoogle ScholarPubMed
Everling, S., & Fischer, B. (1998). The antisaccade: a review of basic research and clinical studies. Neuropsichologia, 36(9), 885899. doi:10.1016/S0028-3932(98)00020-7CrossRefGoogle ScholarPubMed
Everling, S., Krappmann, P., & Flohr, H. (1997). Cortical potentials preceding pro- and antisaccades in man. Electroencepholography and Clinical Neurophysiology, 102(4), 356362. doi:10.1016/S0013-4694(96)96569-4CrossRefGoogle ScholarPubMed
Fan, J., Kolster, R., Ghajar, J., Suh, M., Knight, R., Sarkar, R., & McCandliss, B. (2007). Response anticipation and response conflict: an event-related potential and functional magnetic resonance imaging study. The Journal of Neuroscience, 27, 22722282. doi:10.1523/JNEUROSCI.3470-06.2007CrossRefGoogle ScholarPubMed
Ford, K. A., Goltz, H., Brown, M., & Everling, S. (2005). Neural processes associated with antisaccade task performance investigated with event-related FMRI. Journal of Neurophysiology, 94(1), 429440. doi:10.1152/jn.00471.2004Google Scholar
Fuster, J.M. (1989). The prefrontal cortex: Anatomy, physiology and neuropsychology of the frontal lobe (2nd ed.). New York, NY: Raven.Google Scholar
Geschwind, N., & Galaburda, A. M. (1987). Cerebral Lateralization: biological mechanisms, associations and pathology. Cambridge, MA: MIT press.Google Scholar
Goldberg, M. E., & Segraves, M. A. (1989). The visual and frontal cortex. Neurobiology of saccadic eye movements. Reviews of Oculomotor Research, 3, 283313.Google Scholar
Gomez, C. M., Fernandez, A., Maestu, F., Amo, C., Gonzales-Rosa, J., Vaquero, E., & Ortiz, T. (2004). Task-specific sensory and motor preparatory activation revealed by contingent magnetic variation. Cognitive Brain Research, 21, 5968. doi:10.1016/j.cogbrainres.2004.05.005CrossRefGoogle ScholarPubMed
Gomez, C. M., Flores, A., & Ledesma, A. (2007). Fronto-parietal networks activation during the contingent negative variation period. Brain Research Bulletin, 73, 4047. doi:10.1016/j.brainresbull.2007.01.015CrossRefGoogle ScholarPubMed
Gomez, C. M., Marco, J., & Grau, C. (2003). Visuo-motor cortical network of the contingent negative variation. Neuroimage, 20, 216226. doi:10.1016/S1053-8119(03)00295-7CrossRefGoogle ScholarPubMed
Green, M. F., Sergi, M. J., & Kern, R. S. (2003). The laterality of schizophrenia. In Hugdahl, K. & Davidson, R. J. (Eds.), The asymmetrical brain. (pp. 743772). Cambridge, MA: MIT Press.Google Scholar
Gruzelier, J. H. (2003). Theory, methods and new directions in the psychophysiology of the schizophrenic process and schizotypy. International Journal of Psychophysiology, 48(2), 221245. doi:10.1016/S0167-8760(03)00055-2CrossRefGoogle ScholarPubMed
Hazlett, E. A., Buchsbaum, M. S., Kemether, E., Bloom, R., Platholi, J., Brickman, A. M., & Byne, W. (2004). Abnormal glucose metabolism in the mediodorsal nucleus of the thalamus in schizophrenia. The American Journal of Psychiatry, 161(2), 305314. doi:10.1176/appi.ajp.161.2.305CrossRefGoogle ScholarPubMed
Holzman, P. S. (1996). On the trail of the genetics and pathophysiology of schizophrenia. Psychiatry, 59(2), 117127.Google Scholar
Johnston, K., & Everling, S. (2008). Neurophysiology and neuroanatomy of reflexive and voluntary saccades in non-human primates. Brain and Cognition, 68(3), 271283. doi:10.1016/j.bandc.2008.08.017Google Scholar
Khonsari, R. H., Lobel, E., Milea, D., Lehéricy, S., Pierrot-Deseilligny, C., & Berthoz, A. (2007). Lateralized parietal activity during decision and preparation of saccades. Neuroreport, 18(17), 17971800. doi:10.1097/WNR.0b013e 3282f1a986CrossRefGoogle ScholarPubMed
Kirenskaya, A., Lazarev, I., Myamlin, V., Novototsky-Vlasov, V., Tomilovskaya, E., & Kozlovskaya, I. (2008). Eye dominance and brain processes related to antisaccades in microgravity conditions and schizophrenic patients. International Journal of Psychophysiology, 69(3), 254. doi:10.1016/j.ijpsycho.2008.05.165CrossRefGoogle Scholar
Klein, C. (1997). The Post-Imperative Negative Variation in Schizophrenic Patients and Healthy Subjects. Frankfurt, Germany: Peter Lang.Google Scholar
Klein, C., Heinks, T., Andresen, B., Berg, P., & Moritz, S. (2000). Impaired modulation of the saccadic contingent negative variation preceeding antisaccades in schizophrenia. Biological Psychiatry, 47, 978990. doi:10.1016/S0006-3223(00)00234-1CrossRefGoogle Scholar
Lazarev, I. E., & Kirenskaya, A. V. (2008). The influence of eye dominance on saccade characteristics and slow presaccadic potentials. Human Physiology, 34(2), 150160. doi:10.1134/S0362119708020035CrossRefGoogle Scholar
Lee, K. M., Chang, K. H., & Roh, J. K. (1999). Subregions within the supplementary motor area activated at different stages of movement preparation and execution. Neuroimage, 9, 117123. doi:10.1006/nimg.1998.0393CrossRefGoogle ScholarPubMed
Lehrer, D. S., Christian, B. T., Mantil, J., Murray, A. C., Buchsbaum, B. R., Oakes, T. R., … Buchsbaum, M. S. (2005). Thalamic and prefrontal FDG uptake in never medicated patients with schizophrenia. The American Journal of Psychiatry, 162(5), 931938. doi:10.1176/appi.ajp.162.5.931CrossRefGoogle ScholarPubMed
Mattews, A., Flohr, H., & Everling, S. (2002). Cortical activation associated with midtrail of instruction in a saccadic task. Experimental Brain Research, 143, 488498.CrossRefGoogle Scholar
McDowell, J. E., & Clementz, B. A. (2001). Behavioral and brain imaging studies of saccadic performance in schizophrenia. Biological Psychology, 57, 522. doi:10.1016/S0301-0511(01)00087-4CrossRefGoogle ScholarPubMed
McDowell, J. E., Brown, G. G., Paulus, M., Martinez, A., Stewart, S. E., Dubowitz, D. J., & Braff, D. L. (2002). Neural correlates of refixation saccades and antisaccades in normal and schizophrenia subjects. Biological Psychiatry, 51(3), 216223.doi:10.1016/S0006-3223(01)01204-5CrossRefGoogle ScholarPubMed
Nagai, Y., Critchley, H. D., Featherstone, E., Fenwick, P. B. C., Trimble, M. R., & Dolan, R. J. (2004). Brain activity relating to the contingent negative variation: an fMRI investigation. Neuroimage, 21, 12321241. doi:10.1016/j.neuroimage.2003.10.036CrossRefGoogle Scholar
Novototsky-Vlasov, V. Yu., Garakh, J. V., & Kovalev, V. P. (2007). A method for repetitive artifact suppression in multichannel EEG recordings. Human Physiology, 33(2), 231235. doi:10.1134/S0362119707020156CrossRefGoogle Scholar
O'Driscoll, G. A., Alpert, N. M., Matthysse, S. W., Levy, D. L., Rauch, S. L., & Holzman, P. S. (1995). Functional neuroanatomy of antisaccade eye movements investigated with positron emission tomography. Proceedings of the National Academy of Sciences of the United States of America, 92(3), 925929. doi:10.1073/pnas.92.3.925Google Scholar
O'Driscoll, G. A., Strakowski, S. M., Alpert, N. M., Matthysse, S. W., Rauch, S. L., Levy, D. L., & Holzman, P. S. (1998). Differences in cerebral activation during smooth pursuit and saccadic eye movements using positron-emission tomography. Biological Psychiatry, 44(8), 685689. doi:10.1016/S0006-3223(98)00047-XCrossRefGoogle ScholarPubMed
Pardo, J. V., Pardo, P. J., Janer, K. W., & Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences of the United States of America. 87(1), 256259. doi:10.1073/pnas.87.1.256CrossRefGoogle ScholarPubMed
Paus, T., Petrides, M., Evans, A. C., & Meyer, E. (1993). Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. Journal of Neurophysiology, 70(2), 453469.CrossRefGoogle ScholarPubMed
Posner, M. I. (2005). Timing the brain: mental chronometry as a tool in neuroscience. Plos Biology, 3(2), e51. doi:10.1371/journal.pbio.0030051CrossRefGoogle ScholarPubMed
Reuter, B., Herzog, E., Endrass, T., & Kathmann, N. (2006). Brain potentials indicate poor preparation for action in schizophrenia. Psychophysiology, 43(6), 604611. doi:10.1111/j.1469-8986.2006.00454.xGoogle Scholar
Richards, J. (2003). Cortical sources of event-related potentials in the prosaccade and antisaccade task. Psychophysiology, 40(6), 878894. doi:10.1111/1469-8986.00106Google Scholar
Ruchkin, D. S., Sutton, S., Mahaffey, D., & Glaser, J. (1986). Terminal CNV in the absence of motor response. Electroencepholography and Clinical Neurophysiology, 63, 445463. doi:10.1016/0013-4694(86)90127-6CrossRefGoogle ScholarPubMed
Rushworth, M. F., Passingham, R. E., & Nobre, A. C. (2002). Components of switching intentional set. Journal of Cognitive Neuroscience, 14(8), 11391150. doi:10.1162/089892902760807159CrossRefGoogle ScholarPubMed
Rushworth, M. F., Johansen-Berg, H., Gobel, S. M., & Devlin, J. T. (2003). The left parietal and premotor cortices: motor attention and selection. Neuroimage, 20, 89100. doi:10.1016/j.neuroimage.2003.09.011CrossRefGoogle ScholarPubMed
Rushworth, M. F., Walton, M. E., Kennerley, S. W., & Bannerman, D. M. (2004). Action sets and decisions in the medial frontal cortex. Trends in Cognitive Sciences, 8(9), 410417. doi:10.1016/j.tics.2004.07.009CrossRefGoogle ScholarPubMed
Salgado-Pineda, P., Junqué, C., Vendrell, P., Baeza, I., Bargalló, N., Falcón, C., & Bernardo, M. (2004). Decreased cerebral activation during CPT performance: structural and functional deficits in schizophrenic patients. Neuroimage, 21(3), 840847.CrossRefGoogle ScholarPubMed
Schlag-Rey, M., Amador, N., Sanchez, H., & Schlag, J. (1997). Antisaccade performance predicted by neuronal activity in the supplementary eye field. Nature 390, 398401.CrossRefGoogle ScholarPubMed
Selemon, L. D., & Goldman-Rakic, P. S. (1988). Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. The Journal of Neuroscience, 8(11), 40494068.CrossRefGoogle ScholarPubMed
Sereno, A. B., & Holzman, P. S. (1995). Antisaccades and smooth pursuit eye movements in schizophrenia. Biological Psychiatry, 37(6), 394401. doi:10.1016/0006-3223(94)00127-OCrossRefGoogle ScholarPubMed
Shibasaki, H., Barret, G., Halliday, E., & Halliday, A. (1980). Components of the movement-related cortical potential and their scalp topography. Electroencepholography and Clinical Neurophysiology, 4(3), 213226. doi:10.1016/0013-4694(80)90216-3CrossRefGoogle Scholar
Sweeney, J. A., Luna, B., Keedy, S. K., McDowell, J. E., & Clementz, B. A. (2007). fMRI studies of eye movement control: investigating the interaction of cognitive and sensorimotor brain systems. Neuroimage, 36, 5460. doi:10.1016/j.neuroimage.2007.03.018CrossRefGoogle ScholarPubMed
Sweeney, J. A., Mintun, M. A., Kwee, S., Wiseman, M. B., Brown, D. L., Rosenberg, D. R., & Carl, J. R. (1996). Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. Journal of Neurophysiology, 75, 454468.CrossRefGoogle ScholarPubMed
Talsma, D., Slagter, H. A., Nieuwenhuis, S., Hage, J., & Kok, A. (2005). The orienting of visuospatial attention: an event-related brain potential study. Cognitive Brain Research, 25(1), 117129. doi:10.1016/j.cogbrainres.2005.04.013CrossRefGoogle ScholarPubMed
Tucker, D. M., & Williamson, P. A., (1984). Asymmetric neural control system in human self-regulation. Psychological Review, 91(1), 185215. doi:10.1037//0033-295X.91.2.185CrossRefGoogle ScholarPubMed
van Boxtel, G. J., van der Molen, M. V., Jennings, J. R., & Brunia, C. H. (2001). A psychophysiological analysis of inhibitory motor control in the stop-signal paradigm. Biological Psychology, 58, 229262. doi:10.1016/S0301-0511(01)00117-XCrossRefGoogle ScholarPubMed
Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C., & Winter, A. L. (1964). Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature, 203, 380384.Google Scholar
Yücel, M., Pantelis, C., Stuart, G. W., Wood, S. J., Maruff, P., Velakoulis, D., … Egan, G. F. (2002). Anterior cingulate activation during Stroop task performance: a PET to MRI coregistration study of individual patients with schizophrenia. American Journal of Psychiatry, 159(2), 251254.doi:10.1176/appi.ajp.159.2.251CrossRefGoogle ScholarPubMed