Skip to main content Accessibility help
×
Home

Why do stored hydrated recalcitrant seeds die?

  • N.W. Pammenter (a1), P. Berjak (a1), J.M. Farrant (a2), M.T. Smith (a3) and G. Ross (a4)...

Abstract

A characteristic of recalcitrant seeds is that, if they are maintained under storage conditions that prevent water loss, they will ultimately lose viability. A current view is that hydrated recalcitrant seeds are metabolically active and undergo germination-associated changes in storage. Some of these changes, such as extensive vacuolation and increase in cell size, imply a requirement for water additional to that present in the seed on shedding. It is therefore suggested that, in storage, recalcitrant seeds are exposed to an initially mild, but increasingly severe, water stress. Deleterious events associated with a water stress of considerable duration are suggested to lead ultimately to the death of the tissue.

The damage that occurs on prolonged storage is unlikely to be associated with an inability to form glasses or prevent membrane lipid phase changes, as absolute water contents are higher than those at which these mechanisms become important. It is considered that the most likely process leading to death of water-stressed (as opposed to dehydrated) tissue is a breakdown of co-ordination of metabolism, leading to uncontrolled free-radical-mediated oxidative damage.

It is generally difficult to maintain tissue in a mild water-stressed condition for extended periods. Stored, hydrated, recalcitrant seeds may provide an ideal model system for studying the metabolic effects of prolonged mild water stress.

Copyright

Corresponding author

* Correspondence

References

Hide All
Berjak, P., Dini, M. and Pammenter, N.W. (1984) Possible mechanisms underlying the differing dehydration responses in recalcitrant and orthodox seeds: desiccation-associated subcellular changes in propagules of Avicennia marina. Seed Science and Technology 12, 365384.
Berjak, P., Pammenter, N.W. and Vertucci, C.W. (1992) Homoiohydrous (recalcitrant) seeds: developmental status, desiccation sensitivity and the state of water in the axes of Landolphia kirkii Dyer. Planta 186, 249261.
Berjak, P., Vertucci, C.W. and Pammenter, N.W. (1993) Effects of developmental status and dehydration rate on characteristics of water and desiccation-sensitivity in recalcitrant seeds of Camellia sinensis. Seed Science Research 3, 155166.
Bewley, J.D. (1979) Physiological aspects of desiccation tolerance. Annual Review of Plant Physiology 30, 195238.
Chin, H.F. and Roberts, E.H. (1980) Recalcitrant crop seeds. Kuala Lumpur, Tropical Press SDN.BDH.
Espindola, L.S., Corbineau, F. and Côme, D. (1993) Early events occurring during dehydration of recalcitrant embryos of Araucaria angustifolia seeds. pp 873878 in Côme, D., and Corbineau, F. (Eds) Fourth international workshop on seeds: basic and applied aspects of seed biology. Paris, ASFIS.
Farrant, J.M., Berjak, P. and Pammenter, N.W. (1985) The effect of drying rate on viability retention of recalcitrant propagules of Avicennia marina. South African Journal of Botany 51, 432438.
Farrant, J.M., Pammenter, N.W. and Berjak, P. (1986) The increasing desiccation sensitivity of recalcitrant Avicennia marina seeds with storage time. Physiologia Plantarum 67, 291298.
Farrant, J.M., Pammenter, N.W. and Berjak, P. (1989) Germination associated events and the desiccation sensitivity of recalcitrant seeds: a study on three unrelated species. Planta 178, 189198.
Finch-Savage, W.E. (1992) Embryo water status and survival in the recalcitrant species Quercus robur L.: evidence for a critical moisture content. Journal of Experimental Botany 43, 663669.
Finch-Savage, W.E., Grange, R.I., Hendry, G.A.F. and Atherton, N.M. (1993) Embryo water status and loss of viability during desiccation in the recalcitrant species Quercus robur L. pp 723730 inCôme, D. Côme, D. and Corbineau, F. (Eds) Fourth international workshop on seeds: basic and applied aspects of seed biology. Paris, ASFIS.
Flower, D.J. and Ludlow, M.M. (1986) Contribution of osmotic adjustment to the dehydration tolerance of water-stressed pigeon pea (Cajanus cajan (L.) Millsp.) leaves. Plant Cell and Environment 9, 3340.
Hendry, G.A.F. (1993) Oxygen free radical processes and seed longevity. Seed Science Research 3, 141153.
Hendry, G.A.F., Finch-Savage, W.E., Thorpe, P.C., Atherton, N.M., Buckland, S.M., Nilsson, K.A. and Seel, W.E. (1992) Free radical processes and loss of seed viability during desiccation in the recalcitrant species Quercus robur L. New Phytologist 122, 273279.
Hrazdina, G. and Jensen, R.A. (1992) Spatial organization of enzymes in plant metabolic pathways. Annual Review of Plant Physiology and Plant Molecular Biology 43, 241267.
Hsiao, T.C. (1973) Plant responses to water stress. Annual Review of Plant Physiology 24, 519570.
Kermode, A.R. (1990) Regulatory mechanisms involved in the transition from seed development to germination. Critical Reviews in Plant Sciences 9, 155195.
Leopold, A.C.(Ed.) (1986) Membranes, metabolism and dry organisms. Ithaca, New York, Cornell University Press.
Leprince, O., Deltour, R., Thorpe, P.C., Atherton, N.M. and Hendry, G.A.F. (1990) The role of free radicals and radical processing systems in loss of desiccation tolerance in germinating maize (Zea mays L.). New Phytologist 116, 573580.
Leprince, O., Hendry, G.A.F. and McKersie, B.D. (1993) The mechanisms of desiccation tolerance in developing seeds. Seed Science Research 3, 231246.
Levitt, J. (1980) Responses of plants to environmental stresses. Vol II. Water, radiation, salt and other stresses. New York, Academic Press.
Pammenter, N.W., Vertucci, C.W. and Berjak, P. (1991) Homeohydrous (recalcitrant) seeds: dehydration, the state of water and viability characteristics in Landolphia kirkii. Plant Physiology 96, 10931098.
Pammenter, N.W., Vertucci, C.W. and Berjak, P. (1993) Responses to desiccation in relation to non-freezable water in desiccation-sensitive and -tolerant seeds. pp 867872 in Côme, D. and Corbineau, F. (Eds) Fourth international workshop on seeds: basic and applied aspects of seed biology. Paris, ASFIS.
Rubinstein, B., Mahar, P. and Tatter, T.A. (1977) Effects of osmotic shock on some membrane-regulated events of oat coleoptile cells. Plant Physiology 59, 365368.
Smith, M.T. and Berjak, P. (in press) Deteriorative changes associated with the loss of viability of stored desiccation-tolerant and -sensitive seeds. in Ngebi, M. and Kigel, J. (Eds) Seed development and germination: applied aspects. New York, Marcel Dekker.
Tompsett, P.B. and Pritchard, H.W. (1993) Water status changes during development in relation to the germination and desiccation tolerance of Aesculus hippo-castanum seeds. Annals of Botany 71, 107116.
Vertucci, C.W. (1990) Calorimetric studies of the state of water in seed tissues. Biophysical Journal 58, 14631471.
Vertucci, C.W. (1993) Towards a unified hypothesis of seed aging. pp 739746 in Côme, D. and Corbineau, F. (Eds) Fourth international workshop on seeds: basic and applied aspects of seed biology. Paris, ASFIS.
Vertucci, C.W. and Farrant, J.M. (in press) Acquisition and loss of desiccation tolerance. in Ngebi, M. and Kigel, J. (Eds) Seed development and germination: applied aspects. New York, Marcel Dekker.
Villiers, T.A. (1973) Ageing and longevity of seeds in the field. pp 265288 in Heydecker, W. (Ed.) Seed ecology. London, Butterworth.

Keywords

Why do stored hydrated recalcitrant seeds die?

  • N.W. Pammenter (a1), P. Berjak (a1), J.M. Farrant (a2), M.T. Smith (a3) and G. Ross (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed