Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T06:32:04.866Z Has data issue: false hasContentIssue false

USING RAPID ATMOSPHERIC 14C CHANGES IN THE 7TH CENTURY BC TO PRECISELY DATE THE FLOATING CHRONOLOGY FOR PINE WOOD FROM JÓZEFOWO (NORTHERN POLAND)

Published online by Cambridge University Press:  14 March 2024

Damian Wiktorowski*
Affiliation:
AGH University of Science and Technology (AGH-UST), Mickiewicza Av. 30, 30-059 Krakow, Poland
Marek Krąpiec
Affiliation:
AGH University of Science and Technology (AGH-UST), Mickiewicza Av. 30, 30-059 Krakow, Poland
Jacek Pawlyta
Affiliation:
AGH University of Science and Technology (AGH-UST), Mickiewicza Av. 30, 30-059 Krakow, Poland
Joanna Barniak
Affiliation:
AGH University of Science and Technology (AGH-UST), Mickiewicza Av. 30, 30-059 Krakow, Poland
Andrzej Rakowski
Affiliation:
Silesian University of Technology, Konarskiego 22B str., 44-100 Gliwice, Poland
*
*Corresponding author. Email: wiktorowski@agh.edu.pl

Abstract

The floating dendrochronological sequence of pine wood from Józefowo, N. Poland was expected to cover the ∼660 BC radiocarbon (14C) excursion. The sequence was radiocarbon dated using the OxCal wiggle matching procedure and the IntCal20 calibration curve. 14C concentrations were measured in one-year α-cellulose samples from around 660 BC. The published data on the ∼660 BC 14C excursion from Grabie, Poland were used to absolute date the Józefowo chronology with 1-year accuracy. The results confirm the occurrence of a rapid increase in Δ14C in 664/663 BC and its potential to be used as a fixing point for floating dendrochronological sequences.

Type
Conference Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 24th Radiocarbon and 10th Radiocarbon & Archaeology International Conferences, Zurich, Switzerland, 11–16 Sept. 2022

References

REFERENCES

Achterberg, IEM, Eckstein, J, Birkholz, B, Bauerochse, A, Leuschner, HH. 2018. Dendrochronogically dated pine stumps document phase wise bog expansion at a northwest German site between ca. 6700 and ca. 3400 BC. Climate of the Past 14:85100.CrossRefGoogle Scholar
Baillie, MGL, Pilcher, JR. 1973. A simple cross dating program for tree-ring research. Tree-Ring Bulletin 33:714.Google Scholar
Barniak, J, Krąpiec, M, Jurys, L. 2014. Subfossil wood from the Rucianka raised bog (NE Poland) as an indicator of climatic changes in the first millennium BC. Geochronometria 41(1):104110.CrossRefGoogle Scholar
Bronk Ramsey, C, Dee, M, Lee, S, Nakagawa, T, Staff, R. 2010. Developments in the calibration and modelling of radiocarbon dates. Radiocarbon 52(3):953961.CrossRefGoogle Scholar
Becker, B. 1993. An 11,000-year German oak and pine dendrochronology for radiocarbon calibration. in Calibration 1993. Radiocarbon 35(1):201213.Google Scholar
Cherkinsky, A, Culp, RA, Dvoracek, DK, Noakes, JE. 2010. Status of the AMS facility at the University of Georgia. Nuclear Instruments and Methods in Physics Research B 268(7–8):867870.CrossRefGoogle Scholar
Eckstein, D, Bauch, J. 1969. Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt 88:230250.CrossRefGoogle Scholar
Edvardsson, J, Corona, C, Mazeika, J, Pukienè, R, Stoffel, M. 2016a. Recent advances in long-term climate and moisture reconstructions from the Baltic region: exploring the potential for a new multi-millenial tree-ring chronology. Quaternary Science Reviews 131:118126.CrossRefGoogle Scholar
Edvardsson, J, Stoffel, M, Corona, C, Bragazza, L, Leuschner, HH, Charman, DJ, Helama, S. 2016b. Subfossil peatland trees as proxies for Holocene palaeohydrology and palaeoclimate. Earth Science Reviews 163:118140.CrossRefGoogle Scholar
Friedrich, M, Remmele, S, Kromer, B, Hofmann, J, Spurk, M, Felix Kaiser, K, Küppers, M. 2004. The 12,460-year Hohenheim oak and pine tree-ring chronology from Central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46(3):11111122.CrossRefGoogle Scholar
Green, JW. 1963. Wood cellulose. In: Whistler, RL, editor. Methods in carbohydrate chemistry. Volume 3. New York: Academic Press. p. 921.Google Scholar
Hakozaki, M, Miyake, F, Nakamura, T, Kimura, K, Masuda, K, Okuno, M. 2018. Verification of the annual dating of the 10th century Baitoushan volcano eruption based on an AD 774–775 radiocarbon spike. Radiocarbon 60(1):261268.CrossRefGoogle Scholar
Heussner, K U. 1996. Zum Stand der Dendrochronologie in unteren Odergebiet. In: Moździoch S, editor. Człowiek a Środowisko w Środkowym i Dolnym Nadodrzu (Man and Environment in the Middle and Lower Nadodrze). PAN, Instytut Archeologii i Etnologii, Wrocław, Spotkania Bytomskie 2:207–211.Google Scholar
Holmes, RL. 1999. User’s manual for program COFECHA. Tucson (AZ): University of Arizona.Google Scholar
Koldobskiy, S, Mekhaldi, F, Kovaltsov, G, Usoskin, I. 2023. Multiproxy reconstructions of integral energy spectra for extreme solar particle events of 7176 BCE, 660 BCE, 775 CE, and 994 CE. Journal of Geophysical Research: Space Physics 128(3). doi: 10.1029/2022JA031186Google Scholar
Krawczyk, A, Krąpiec, M. 1995. Dendrochronologiczna baza danych. Materiały II Krajowej Konferencji: Komputerowe wspomaganie badań naukowych (Dendrochronological database. Proceedings of the Second Polish Conference on Computer Assistance to Scientific Research). Wrocław: 247–52. In Polish.Google Scholar
Krąpiec, M. 2001. Holocene dendrochronological standards for subfossil oaks from the area of Southern Poland. Studia Quaternaria 18:4763.Google Scholar
Krąpiec, M, Margielewski, W, Korzeń, K, Szychowska-Krąpiec, E, Nalepka, D, Łajczak, A. 2016. Late Holocene palaeoclimate variability: the significance of bog pine dendrochronology related to peat stratigraphy. The Puścizna Wielka raised bog case study (Orawa-Nowy Targ Basin, Polish Inner Carpathians). Quaternary Science Reviews 148:192–208.Google Scholar
Krąpiec, M, Rakowski, A. Z, Huels, M, Wiktorowski, D, Hamann, C. 2018. A new graphitization system for radiocarbon dating with AMS on the dendrochronological laboratory at AGH-UST Kraków. Radiocarbon 60(4):10911100.CrossRefGoogle Scholar
Krąpiec, M, Rakowski, AZ, Pawlyta, J, Wiktorowski, D, Bolka, M. 2021. Absolute dendrochronological scale for pine (Pinus sylvestris L.) from Ujście (NW Poland), dated using rapid atmospheric 14C changes. Radiocarbon 63(4):12051214.CrossRefGoogle Scholar
Leuschner, HH, Delorme, A. 1988. Tree-ring work in Goettingen: absolute oak chronology back to 6255 BC. PACT 22:123132.Google Scholar
Leuschner, HH, Sass-Klassen, U, Jansma, E, Baillie, MGL, Spurk, M. 2002. Subfossil European bog oaks: population dynamics and long-term growth depressions as indicators of changes in the Holocene hydro-regime and climate. The Holocene 12(6):695706.CrossRefGoogle Scholar
Miyake, F, Jull, AJT, Panyushkina, IP, Wacker, L, Salzer, M, Baisan, CH, Lange, T, Cruz, R, Masuda, K, Nakamura, T. 2017. Large 14C excursion in 5480 BC indicates an abnormal sun in the mid-Holocene. Proceedings of the National Academy of Sciences of the United States of America 114(5):881884.CrossRefGoogle Scholar
Miyake, F, Masuda, K, Hakozaki, M, Nakamura, T. 2014. Verification of the cosmic-ray event in AD 993–994 by using a Japanese Hinoki tree. Radiocarbon 56(3):11841194.CrossRefGoogle Scholar
Miyake, F, Masuda, K, Nakamura, T. 2013. Another rapid event in the carbon-14 content of tree rings. Nature Communications 4:1748.CrossRefGoogle ScholarPubMed
Miyake, F, Nagaya, K, Masuda, K, Nakamura, T. 2012. A signature of cosmic-ray increases in AD 774–775 from tree rings in Japan. Nature 486(7402):240242.CrossRefGoogle ScholarPubMed
Nemec, M, Wacker, L, Hajdas, I, Gäggeler, H. 2010. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52(2–3):13581370.CrossRefGoogle Scholar
O’Hare, P, Mekhaldi, F, Adolphi, F, Reisbeck, G, Aldahan, A, Anderberg, E, Beer, J, Christl, M, Fahrni, S, Synal, H-A, Park, J, Possnert, G, Southon, J, Edouard, B, ASTER, Team, Muscheler, R. 2019. Multiradionuclide evidence for an extreme solar proton event around 2,610 BP (∼660 BC). Proceedings of the National Academy of Sciences 116(13):59615966.CrossRefGoogle Scholar
Park, J, Southon, J, Fahrni, S, Creasman, PP, Mewaldt, R. 2017. Relationship between solar activity and Δ14C peaks in AD 775, AD 994, and 660 BC. Radiocarbon 59(4):11471156.CrossRefGoogle Scholar
Pazdur, A, Korput, S, Fogtman, M, Szczepanek, M, Hałas, S, Krąpiec, E, Szychowska-Krąpiec, E. 2005. Carbon-13 in α-cellulose of oak latewood (Jędrzejów, southern Poland) during the Maunder minimum. Geological Quarterly 49(2):165172.Google Scholar
Pearson, C, Salzer, M, Wacker, L, Brewer, P, Sookdeo, A, Kuniholm, P. 2020. Securing timelines in the ancient Mediterranean using multiproxy annual tree-ring data. Proceedings of the National Academy of Sciences 117(15):84108415.CrossRefGoogle ScholarPubMed
Pukienè, R. 2001. Natural change in bog vegetation reconstructed by sub-fossil tree remnant analysis. Biologija 2:111113.Google Scholar
Rakowski, A, Krąpiec, M, Huels, M, Pawlyta, J, Hamann, C, Wiktorowski, D. 2019. Abrupt increase of radiocarbon concentration in 660 BC in tree rings from Grabie near Kraków (SE Poland). Radiocarbon 61(5):13271335.CrossRefGoogle Scholar
Rakowski, AZ, Pawlyta, J, Miyahara, H, Krąpiec, M, Molnar, M, Wiktorowski, D, Minami, M. 2023. Radiocarbon concentration in sub-annual tree rings from Poland around 660 BCE. Radiocarbon: 1–10. doi: 10.1017/RDC.2023.79 CrossRefGoogle Scholar
Reimer, PJ, Austin, WEN, Bard, E, Bayliss, A, Blackwell, PG, Ramsey, CB, Butzin, M, Cheng, H, Edwards, RL, Friedrich, M, et al. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757. doi: 10.1017/RDC.2020.41 CrossRefGoogle Scholar
Rinn, F. 2005. TSAP-Win. Time series analysis and presentation for dendrochronology and related applications. User reference. Heidelberg.Google Scholar
Rose, HA, Müller-Scheeßel, N, Meadows, J, Hamann, C. 2022. Radiocarbon dating and Hallstatt chronology: a Bayesian chronological model for the burial sequence at Dietfurt an der Altmühl ‘Tennisplatz’, Bavaria, Germany. Archaeological and Anthropological Sciences 14(4):72.CrossRefGoogle Scholar
Sakurai, H, Tokanai, F, Miyake, F, Horiuchi, K, Masuda, K, Miyahara, H, Ohyama, M, Sakamoto, M, Mitsurani, T, Moriya, T. 2020. Prolonged production of 14C during the ∼660 BCE solar proton event from Japanese tree rings. Scientific Reports Nature 10:660.CrossRefGoogle ScholarPubMed
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19:355363.CrossRefGoogle Scholar
Szychowska-Krąpiec, E, Krąpiec, M. 2005. The Scots pine chronology (1582–2004 AD) for the Suwalki region, NE Poland. Geochronometria 24:4151.Google Scholar
Szychowska-Krąpiec E. 2010. Long-term chronologies of pine (Pinus sylvestris L.) and fir (Abies alba Mill.) from the Małopolska region and their palaeoclimatic interpretation. Folia Quaternaria 79:5124.Google Scholar
Wacker, L, Güttler, D, Goll, J, Hurni, J, Synal, H-A, Walti, N. 2014. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. Radiocarbon 56(2):573579. doi: 10.2458/56.17634 CrossRefGoogle Scholar
Wiktorowski, D, Krąpiec, M, Rakowski, A, Cherkinsky, A. 2020. Status of the AMS graphitization system in the dendrochronological laboratory at AGH-UST, Kraków. Geochronometria 47 (1): 112117.CrossRefGoogle Scholar
Zielski, A. 1997. Uwarunkowania Środowiskowe Przyrostów Radialnych Sosny Zwyczajnej (Pinus sylvestris L.) w Polsce Północnej na Podstawie Wielowiekowej Chronologii (Environmental Conditions of Radial Growth of Pinus sylvestris from North Poland on the Basis of Long Time Chronology). Wydawnictwo UMK, Toruń: 127 p. In Polish.Google Scholar
Zielski, A, Krąpiec, M. 2004. Dendrochronologia. Wydawnictwo Naukowe PWN. Warszawa. p. 1328.Google Scholar