Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T15:31:47.166Z Has data issue: false hasContentIssue false

20 YEARS OF AMS 14C DATING USING THE ARTEMIS FACILITY AT THE LMC14 NATIONAL LABORATORY: REVIEW OF SERVICE AND RESEARCH ACTIVITIES

Published online by Cambridge University Press:  24 April 2023

L Beck*
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
I Caffy
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
E Delqué-Količ
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
J-P Dumoulin
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
C Goulas
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
S Hain
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
C Moreau
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
M Perron
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
V Setti
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
M Sieudat
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
B Thellier
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
*
*Corresponding author. Email: lucile.beck@cea.fr

Abstract

In 2001, five French public organizations (CNRS, CEA, IRD, IRSN, and the Ministère de la Culture) signed an agreement to purchase a new accelerator mass spectrometer to provide radiocarbon dating services at the national level. The Laboratoire de Mesure du Carbone 14 (LMC14) was set up in Saclay (France) around ARTEMIS, an AMS system based on a 3MV Pelletron from NEC and installed in early 2003. In 2015, the LMC14 joined the Laboratoire des Sciences du Climat et de l’Environnement, making it possible to develop research projects in addition to the service activity and since 2021, the LMC14 has been a member of the IAEA Collaborating Centre “Atoms for Heritage” at the Université Paris-Saclay. Since 2003, 70,000 samples have been measured. Two-thirds of the samples have been prepared on site and one-third in two associated laboratories in Paris and Lyon. Over the past years, the LMC14 has participated in several international inter-comparisons and has continuously improved its capabilities by developing new protocols for preparation and measurement. In this paper, the radiocarbon dating services of the last 20 years for research institutions, museums and environmental monitoring are reviewed and recent results from environmental and archaeological research programs are highlighted.

Type
Conference Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 24th Radiocarbon and 10th Radiocarbon & Archaeology International Conferences, Zurich, Switzerland, 11–16 Sept. 2022

References

REFERENCES

Arnold, M, Bard, E, Maurice, P, Duplessy, JC. 1987. 14C dating with the Gif-sur-Yvette Tandetron accelerator: status report. Nuclear Instruments and Methods in Physics Research B 29(1–2):120123.CrossRefGoogle Scholar
Beck, L. 2022. Ion beam analysis and 14C accelerator mass spectroscopy to identify ancient and recent art forgeries. Physics 4(2):462472. doi: 10.3390/physics4020031.CrossRefGoogle Scholar
Beck, L, Caffy, I, Delqué-Količ, E, et al. 2018. Absolute dating of lead carbonates in ancient cosmetics by radiocarbon. Communications Chemistry 1(1):17. doi: 10.1038/s42004-018-0034-y.CrossRefGoogle Scholar
Beck, L, Caffy, I, Delqué-Količ, E, Dumoulin, J-P, Hain, S, Moreau, C, Perron, M, Sieudat, M, Thellier, B, Van Hove, C. 2022a. Marine reservoir effect of spermaceti, a wax obtained from the head of the sperm whale: a first estimation from museum specimens. Radiocarbon 64(6):16071616. doi: 10.1017/RDC.2022.79.CrossRefGoogle Scholar
Beck, L, Caffy, I, Mussard, S, Delqué-Količ, E, Moreau, C, Sieudat, M, Dumoulin, J-P, Perron, M, Theillier, B, Hain, S, et al. 2022b. Detecting recent forgeries of Impressionist and Pointillist paintings with high-precision radiocarbon dating. Forensic Science International 333:111214. doi: 10.1016/j.forsciint.2022.111214.CrossRefGoogle ScholarPubMed
Beck, L, Genty, D, Lahlil, S, Lebon, M, Tereygeol, F, Vignaud, C, Reiche, I, Lambert, E, Valladas, H, Kaltnecker, E, et al. 2013. Non-destructive portable analytical techniques for carbon in situ screening before sampling for dating prehistoric rock paintings. Radiocarbon 55(2):436444. doi: 10.1017/S003382220005757X.CrossRefGoogle Scholar
Beck, L, Messager, C, Caffy, I, Delqué-Količ, E, Perron, M, Dumoulin, J-P, Moreau, C, Degrigny, C, Serneels, V. 2020. Unexpected presence of 14C in inorganic pigment for an absolute dating of paintings. Scientific reports 10:9582. doi: 10.1038/s41598-020-65929-7.CrossRefGoogle ScholarPubMed
Beck, L, Messager, C, Coelho, S, Caffy, I, Delqué-Količ, E, Perron, M, Mussard, S, Dumoulin, J-P, Moreau, C, Gonzalez, V, et al. 2019. Thermal decomposition of lead white for radiocarbon dating of paintings. Radiocarbon 61(5):13451356. doi: 10.1017/RDC.2019.64.CrossRefGoogle Scholar
Berranger, M, Dillmann, P, Fluzin, P, Vega, E, Aubert, M, Leroy, S, Delqué-Količ, E. 2021. A new understanding of the chronology, circulation and function of Iron Age (8th–1st c. BC) ferrous semi-products in north-eastern France. Archaeol Anthropol Sci 13:102. doi: 10.1007/s12520-021-01333-0.CrossRefGoogle Scholar
Berthaut-Clarac, S, Nantet, E, Leroy, S, Delqué-Količ, E, Perron, M, Adam, P, Schaeffer, P, Kerfant, C, 2022. Dating of a ring on one of the largest known Roman iron anchors (La Grande-Motte, France): Combined metal and organic material radiocarbon analysis. Journal of Archaeological Science: Reports 46, 103693. doi: 10.1016/j.jasrep.2022.103693.Google Scholar
Billard, C. 2008. Le programme ARTEMIS : nouvel outil pour la datation radiocarbone AMS (Spectromètre de Masse par Accélérateur) et nouvelles problématiques. In Situ 9. doi.org/10.4000/insitu.3342.CrossRefGoogle Scholar
Bronk Ramsey, C, Dee, MW, Rowland, JM, Higham, TFG, Harris, SA, Brock, F, Quiles, A, Wild, EM, Marcus, ES, Shortland, AJ. 2010. Radiocarbon-based chronology for dynastic Egypt. Science 328:15541557. doi: 10.1126/science.1189395.CrossRefGoogle ScholarPubMed
Cottereau, E, Arnold, M, Moreau, C, Baqué, D, Bavay, D, Caffy, I, Comby, C, Dumoulin, J-P, Hain, S, Perron, M, et al. 2007. Artemis, the new 14C AMS at LMC14 in Saclay, France. Radiocarbon 49(2):291299.CrossRefGoogle Scholar
Cuzange, M-T, Delqué-Količ, E, Goslar, T, Grootes, PM, Higham, T, Kaltnecker, E, Nadeau, M-J, Oberlin, C, Paterne, M, van der Plicht, J, et al. 2007. Radiocarbon intercomparison program for Chauvet Cave. Radiocarbon 49(2):339347 CrossRefGoogle Scholar
Daux et al. 2022. The “forest” of Notre-Dame de Paris: a possible path into medieval climate and time. Journal of Cultural Heritage. doi: 10.1016/j.culher.2022.09.002. In press.CrossRefGoogle Scholar
Delqué-Količ, E, Caffy, I, Comby-Zerbino, C, Dumoulin, JP, Hain, S, Massault, M, Moreau, C, Quiles, A, Setti, V, Souprayen, C, Tannau, JF, Thellier, B, Vincent, J. 2013a. Advances in handling small radiocarbon sample at the Laboratoire de Mesure du Carbone 14 in Saclay, France. Radiocarbon 55(2):648656. doi: 10.2458/azu_js_rc.55.16356,CrossRefGoogle Scholar
Delqué-Količ, E, Comby-Zerbino, C, Ferkane, S, Moreau, C, Dumoulin, JP, Caffy, I, Souprayen, C, Quilès, A, Bavay, D, Hain, S, Setti, V. 2013b. Preparing and measuring ultra-small radiocarbon samples with the ARTEMIS AMS facility in Saclay, France. Nuclear Instruments and Methods in Physics Research B 294:189193.CrossRefGoogle Scholar
Delqué-Količ, E, Leroy, S, Pagès, G, Leboyer, J. 2017. Iron bar trade between the Mediterranean and Gaul in the Roman Period: 14C dating of products from shipwrecks discovered off the coast of Saintes-Maries-de-la-Mer (Bouches-du-Rhône, France). Radiocarbon 59(2):531544. doi: 10.1017/RDC.2016.109.CrossRefGoogle Scholar
Dumoulin, JP, Caffy, I, Comby-Zerbino, C, Delqué-Količ, E, Hain, S, Massault, M, Moreau, C, Quiles, A, Setti, V, Souprayen, C, Tannau, JF, Thellier, B, Vincent, J. 2013. Development of a line for dissolved inorganic carbon extraction at LMC14 Artemis laboratory in Saclay, France. Radiocarbon 55(2):10431049, doi: 10.2458/azu_js_rc.55.16332.CrossRefGoogle Scholar
Dumoulin, JP, Comby-Zerbino, C, Delqué-Količ, E, Moreau, C, Caffy, I, Hain, S, Perron, M, Thellier, B, Setti, V, Berthier, B, Beck, L. 2017a. Status report on sample preparation protocols developed at the LMC14 laboratory, Saclay, France: from sample collection to 14C AMS measurement. Radiocarbon 59(3):713726.CrossRefGoogle Scholar
Dumoulin, J-P, Lebon, M, Caffy, I, Mauran, G, et al. 2020. Calcium oxalate radiocarbon dating: preliminary tests to date rock art of the decorated open-air caves, erongo mountains, Namibia, Radiocarbon 62(6):15511562.CrossRefGoogle Scholar
Dumoulin, J-P, Messager, C, Valladas, H, Beck, L, Caffy, I, Delqué-Količ, E, Moreau, C, Lebon, M. 2017b. Comparison of two bone-preparation methods for radiocarbon dating: modified Longin and ninhydrin. Radiocarbon 59(6):18351844. doi: 10.1017/RDC.2017.132.CrossRefGoogle Scholar
Dumoulin, JP, Caffy, I, Delqué-Količ, E, Farcage, D, Goulas, C, Hain, S, Moreau, C, Perron, M, Semerok, A, Sieudat, M, Thellier, B, Beck, L Accepted. 14C preparation protocols for archaeological samples at the LMC14, Saclay, France. Radiocarbon.Google Scholar
Dumoulin, JP, Pozzato, L, Rassman, J, Toussaint, F, Fontugne, M, Tisnérat-Laborde, N, Beck, L, Caffy, I, Delqué-Količ, E, Moreau, C, Rabouille, C. 2018. Isotopic signature (δ13C, Δ14C) of DIC in sediment pore waters: an exemple from the Rhône River Delta. Radiocarbon 60(5):14651481.CrossRefGoogle Scholar
Dumoulin, J-P, Rabouille, C, Pourtout, S, Bombled, B, Lansard, B, Caffy, I, Hain, S, Perron, M, Sieudat, M, Thellier, B, et al. 2022. Identification in pore waters of recycled sediment organic matter using the dual isotopic composition of carbon ( $$\delta $$ δ13C and Δ14C): new data from the continental shelf influenced by the Rhône River. Radiocarbon 64(6)16171627. doi: 10.1017/RDC.2022.71.CrossRefGoogle Scholar
Ferrant, M, Caffy, I, Cortopassi, R, Delque-Količ, E, Guichard, H, Mathe, C, Thomas, C, Vieillescazes, C, Bellot-Gurlet, L, Quiles, A. 2022. An innovative multi-analytical strategy to assess the presence of fossil hydrocarbons in a mummification balm. Journal of Cultural Heritage 55:369380. doi: 10.1016/j.culher.2022.04.007 CrossRefGoogle Scholar
Genty, D, Konik, S, Valladas, H, Blamart, D, Hellstrom, J, Touma, M, Moreau, C, Dumoulin, J-P, Nouet, J, Dauphin, Y, Weil, R. 2011. Dating the Lascaux Cave Gour Formation. Radiocarbon 53:479500. doi: 10.2458/azu_js_rc.53.12338.CrossRefGoogle Scholar
Haddam, NA, Siani, G, Michel, E, et al. 2018. Changes in latitudinal sea surface temperature gradients along the Southern Chilean margin since the last glacial. Quaternary Science Reviews 194:6276. doi: 10.1016/j.quascirev.2018.06.023.CrossRefGoogle Scholar
Hajdas, I, Jull, A, Huysecom, E, Mayor, A, Renold, M, Synal, H-A, et al. 2019. Radiocarbon dating and the protection of cultural heritage. Radiocarbon 61(5):11331134. doi: 10.1017/RDC.2019.100.CrossRefGoogle Scholar
Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Lindroos, A, Heinemeier, J, Ringbom, Å, Michalska, D, Hajdas, I, Hueglin, S, et al. 2017. Mortar dating methodology: assessing recurrent issues and needs for further research. Radiocarbon 59(6):18591871. doi: 10.1017/RDC.2017.129.CrossRefGoogle Scholar
Heimlich, G, Pons-Branchu, E, Valladas, H, Dapoigny, A, Dumoulin, JP, et al. 2022. First cross dating (U/Th-14C) of calcite covering rock paintings in Africa: the case of the Lovo Massif, Democratic Republic of the Congo. Journal of Archaeological Science: Reports 45:103623. ISSN 2352-409X. doi: 10.1016/j.jasrep.2022.103623.Google Scholar
Hendriks, L, Hajdas, I, Ferreira, ESB, Scherrer, NC, Zumbühl, S, Küffner, M, Carlyle, L, Synal, H-A, Günther, D. 2019. Selective dating of paint components: radiocarbon dating of lead white pigment. Radiocarbon 61(2):473493. doi: 10.1017/RDC.2018.101.CrossRefGoogle Scholar
Hendriks, L, Kradolfer, S, Lombardo, T, Hubert, V, Kuffner, M, Khandekar, N, Hajdas, I, Synal, H-A, Hattendorf, B, Gunter, D. 2020. Dual isotope system analysis of lead white in artworks. Analyst 145(4):13101318. doi: 10.1039/C9AN02346A.CrossRefGoogle Scholar
Leroy, S, Bauvais, S, Delqué-Količ, E, Hendrickson, M, Josso, N, Dumoulin, J-P, Soutif, D. 2020. First experimental reconstruction of an Angkorian iron furnace (13th–14th centuries CE): archaeological and archaeometric implications. Journal of Archaeological Science: Reports 34:102592. doi: 10.1016/j.jasrep.2020.102592.Google Scholar
Leroy, S, Delqué-Količ, E, Vincent, B, Baptiste, P, Vega, E, McGill, F, Fenn, M. 2021. Le fer comme moyen de datation des bronzes khmers : première approche de prélèvement in situ. Technè. La science au service de l’histoire de l’art et de la préservation des biens culturels 82–91. doi: 10.4000/techne.10073.CrossRefGoogle Scholar
Leroy, S, Hendrickson, M, Bauvais, S, Vega, E, Blanchet, T, Disser, A, Delque-Kolic, E. 2018. The ties that bind: archaeometallurgical typology of architectural crampons as a method for reconstructing the iron economy of Angkor, Cambodia (tenth to thirteenth c.). Archaeol Anthropol Sci 10:21372157. doi: 10.1007/s12520-017-0524-3.CrossRefGoogle Scholar
Leroy, S, Hendrickson, M, Delqué-Kolic, E, Vega, E, Dillmann, P. 2015b. First direct dating for the construction and modification of the Baphuon Temple Mountain in Angkor, Cambodia. PlosOne 10:e0141052. doi: 10.1371/journal.pone.0141052.CrossRefGoogle ScholarPubMed
Leroy, S, L’Héritier, M, Delqué-Kolic, E, Dumoulin, J-P, Moreau, C, Dillmann, P. 2015a. Consolidation or initial design? Radiocarbon dating of ancient iron alloys sheds light on the reinforcements of French Gothic Cathedrals. Journal of Archaeological Science 53:190201. doi: 10.1016/j.jas.2014.10.016.CrossRefGoogle Scholar
L’Héritier, M, Azéma, A, Syvilay, D, Delqué-Kolic, E, Beck, L, Guillot, I, et al. 2023. Notre-Dame de Paris: The first iron lady? Archaeometallurgical study and dating of the Parisian cathedral iron reinforcements. PLoS ONE 18(3):e0280945. doi: 10.1371/journal.pone.0280945.CrossRefGoogle Scholar
Messager, C et al. 2021. Datation par la méthode du radiocarbone du blanc de plomb : du psimythion des cosmétiques antiques au pigment des peintures murales médiévales. Technè 52:102110. doi: 10.4000/techne.10190.CrossRefGoogle Scholar
Messager, C et al. 2022. 25 centuries of lead white manufacturing processes identified by 13C and 14C carbon isotopes. Journal of Archaeological Science: Reports 46. doi.org/10.1016/j.jasrep.2022.103685.CrossRefGoogle Scholar
Messager, C, Beck, L, de Viguerie, L, Jaber, M. 2020. Thermal analysis of carbonate pigments and linseed oil to optimize CO2 extraction for radiocarbon dating of lead white paintings. Microchemical Journal 154:104637. doi: 10.1016/j.microc.2020.104637.CrossRefGoogle Scholar
Messager, E. 2020. Paravani, a puzzling lake in the South Caucasus. Quaternary International ISSN 1040-6182. doi: 10.1016/j.quaint.2020.04.005.CrossRefGoogle Scholar
Moreau, C, Dumoulin, JP, Jaber, M, Caffy, I, Delqué-Kolic, E, Goulas, C, Hain, S, Perron, M, Setti, V, Sieudat, M, et al. Submitted. Development of a 14C protocol at the LMC14 for the dating of cultural heritage materials: historical mortars. Participation in the MODIS international inter-comparison campaign. Radiocarbon.Google Scholar
Moreau, C, Messager, C, Berthier, B, Hain, S, Thellier, B, Dumoulin, J-P, Caffy, I, Sieudat, M, Delqué-Količ, E, Mussard, S, et al. 2020. ARTEMIS, the 14C AMS facility of the LMC14 national laboratory: a status report on quality control and microsample procedures. Radiocarbon 62(6):17551770. doi: 10.1017/RDC.2020.73.CrossRefGoogle Scholar
Palmerini, G, Beck, L, Di Martino, L, et al. 2021. Nuove ricerche sull’arte rupestre dell’Appennino abruzzese. Proceedings of the XXVIII Valcamonica Symposium, Capo di Ponte (Valcamonica), October 28 to 31. ISBN: 978-88-86621-57-1.Google Scholar
Pons-Branchu, E, Barbarand, J, Caffy, I, Dapoigny, A, Drugat, L, et al. 2022. U-series and radiocarbon cross dating of speleothems from Nerja Cave (Spain): evidence of open system behavior. Implication for the Spanish rock art chronology. Quaternary Science Reviews 290:107634. ISSN 0277-3791. doi: 10.1016/j.quascirev.2022.107634.CrossRefGoogle Scholar
Pons-Branchu, E, Bergonzini, L, Tisnérat-Laborde, N, Branchu, P, Dumont, E, Massault, M, Bultez, G, Malnar, D, Kaltnecker, E, Dumoulin, JP, et al. 2018. 14C in urban secondary carbonate deposits: a new tool for environmental study. Radiocarbon 60(4):12691281. doi: 10.1017/RDC.2018.25.CrossRefGoogle Scholar
Pozzato, L, Rassmann, J, Lansard, B, et al. 2018. Origin of remineralized organic matter in sediments from the Rhone River prodelta (NW Mediterranean) traced by delta C-14 and delta C-13 signatures of pore water DIC. Progress in Oceanography 163:112122. doi: 10.1016/j.pocean.2017.05.008 CrossRefGoogle Scholar
Quiles, A, Aubourg, E, Berthier, B, Delque-Količ, E, Pierrat-Bonnefois, G, Dee, MW, Andreu-Lanoë, G, Bronk Ramsey, C, Moreau, C. 2013. Bayesian modelling of an absolute chronology for Egypt’s 18th Dynasty by astrophysical and radiocarbon methods. Journal of Archaeological Science 40:423432.CrossRefGoogle Scholar
Quiles, A, Emerit, S, Asensi-Amorós, V, Beck, L, Caffy, I, Delque-Količ, E, Guichard, H. 2021a. New chronometric insights into ancient egyptian musical instruments held at the musée du Louvre and the musée des beaux-arts de Lyon. Radiocarbon 63(2):545574. doi: 10.1017/RDC.2020.135 CrossRefGoogle Scholar
Quiles, A, Invernon, V, Beck, L, Delqué-Kolic, E, Gaudeul, M, Muller, S, Rouhan, G. 2021b. Clarifying the radiocarbon calibration curve for Ancient Egypt: the wager of Herbaria in natural history collections in the science of the 21st century. Wiley. doi: 10.1002/9781119882237.ch12.CrossRefGoogle Scholar
Quiles, A, Valladas, H, Bocherens, H, et al. 2016. A high-precision chronological model for the decorated Upper Paleolithic cave of Chauvet-Pont d’Arc, Ardeche, France. Proceedings of the National Academy of Sciences of the United States of America 113(17):46704675.CrossRefGoogle ScholarPubMed
Quiles, A, Valladas, H, Geneste, J-M, Clottes, J, Baffler, D, Berthier, B, Brock, F, Ramsey, CB, Delqué-Količ, E, Dumoulin, J-P, et al. 2014. Second radiocarbon intercomparison program for the ChauvetPont d’Arc Cave, Ardèche, France. Radiocarbon 56(2):833850.CrossRefGoogle Scholar
Rapuc, W, Sabatier, P, Arnaud, F, et al. 2019. Holocene-long record of flood frequency in the Southern Alps (Lake Iseo, Italy) under human and climate forcing. Global and Planetary Change 175:160172. doi: 10.1016/j.gloplacha.2019.02.010.CrossRefGoogle Scholar
Reiche, I, Beck, L, Caffy, I. 2021. New results with regard to the Flora bust controversy: radiocarbon dating suggests nineteenth century origin. Sci. Rep. 11:8249. doi: 10.1038/s41598-021-85505-x.CrossRefGoogle Scholar
Richardin, P, Gandolfo, N, Moignard, B, Lavier, C, Moreau, C, Cottereau, E. 2010. Centre of Research and Restoration of the Museums of France: AMS Radiocarbon Dates List 1. Radiocarbon 52(4):16891700. doi: 10.1017/S003382220005642.CrossRefGoogle Scholar
, S, Hendriks, L, Cardoso, Pombo, et al. 2021. Radiocarbon dating of lead white: novel application in the study of polychrome sculpture. Sci. Rep. 11:13210. doi: 10.1038/s41598-021-91814-y.CrossRefGoogle Scholar
Scott, E, Naysmith, P, Cook, G. 2017. Should archaeologists care about 14C intercomparisons? Why? A summary report on SIRI. Radiocarbon 59(5):15891596. doi: 10.1017/RDC.2017.12 CrossRefGoogle Scholar
Scott, E, Naysmith, P, Cook, G. 2019. Life after SIRI—where next? Radiocarbon 61(5):11591168. doi: 10.1017/RDC.2019.10.CrossRefGoogle Scholar
Thouret, JC, Boivin, P, Miallier, D, Donnadieu, F, Dumoulin, JP, Labazuy, P. 2021. Post-eruption evolution of maar lakes and potential instability: the Lake Pavin case study, French Massif Central. Geomorphology 382. doi: 10.1016/j.geomorph.2021.107663.CrossRefGoogle Scholar
Valladas, H, Kaltnecker, E, Quiles, A, Tisnérat-Laborde, N, Genty, D, Arnold, M, Delqué-Količ, E, Moreau, C, Baffier, D, Merle, JJC, et al. 2013. Dating French and Spanish prehistoric decorated caves in their archaeological contexts. Radiocarbon 55(3) :14221431. doi: 10.2458/azu_js_rc.55.16346.CrossRefGoogle Scholar
Valladas, H, Quiles, A, Delque-Kolic, M, Kaltnecker, E, Moreau, C, Pons-Branchu, E, et al. 2017. Radiocarbon dating of the decorated Cosquer Cave (France). Radiocarbon 59(2):621633. doi: 10.1017/RDC.2016.87.CrossRefGoogle Scholar
Waelbroeck, C, Lougheed, BC, Vazquez Riveiros, N, et al. 2019. Consistently dated Atlantic sediment cores over the last 40 thousand years. Sci. Data 6:165. doi: 10.1038/s41597-019-0173-8.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Beck et al. supplementary material

Table S1

Download Beck et al. supplementary material(PDF)
PDF 239.1 KB