Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T14:33:13.598Z Has data issue: false hasContentIssue false

14C PREPARATION PROTOCOLS FOR ARCHAEOLOGICAL SAMPLES AT THE LMC14, SACLAY, FRANCE

Published online by Cambridge University Press:  24 January 2024

J-P Dumoulin*
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
C Moreau
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
E Delqué-Količ
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
I Caffy
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
D Farcage
Affiliation:
Université Paris-Saclay, CEA, Service d’Études Analytiques et de Réactivité des Surfaces, 91191 Gif-sur-Yvette, France
C Goulas
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
S Hain
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
M Perron
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
A Semerok
Affiliation:
Université Paris-Saclay, CEA, Service d’Études Analytiques et de Réactivité des Surfaces, 91191 Gif-sur-Yvette, France
M Sieudat
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
B Thellier
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
L Beck
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
*
*Corresponding author. Email: Jean-Pascal.Dumoulin@lsce.ipsl.fr

Abstract

The Laboratoire de Mesure du Carbone 14 (LMC14) has operated a radiocarbon dating laboratory for almost twenty years with ARTEMIS, the Accelerator Mass Spectrometer (AMS) based on a NEC 9SDH-2 Pelletron tandem accelerator. A first status report describing the chemical pretreatment methods was published in 2017 (Dumoulin et al. 2017). This article summarizes updates of the routine procedures and presents new protocols. The quality checks in place at the LMC14 and results obtained for the GIRI international inter-comparison are reported. New protocols developed by the laboratory over the last five years are described with the preparation of iron, lead white, cellulose, calcium oxalate, and mortar. This report also provides a summary of practical information for sample preparation and can help the laboratory users who provide samples and publish results to better understand all the work behind a 14C dating.

Type
Conference Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 24th Radiocarbon and 10th Radiocarbon & Archaeology International Conferences, Zurich, Switzerland, 11–16 Sept. 2022

References

REFERENCES

Arribet-Deroin, D. 2001. Fondre le fer en gueuses au XVIe siècle. Le haut fourneau de Glinet en pays de Bray (Normandie) [PhD thesis in Archaeology]. Paris I Sorbonne, Paris.Google Scholar
Anchukaitis, KJ, Evans, MN, Lange, T, Smith, DR, Leavitt, SW, Schrag, DP. 2008. Consequences of a Rapid Cellulose Extraction Technique for Oxygen Isotope and Radiocarbon Analyses. Analytical Chemistry 80(6):20352041. doi: 10.1021/ac7020272 CrossRefGoogle ScholarPubMed
Beck, L. 2022. Ion beam analysis and 14C accelerator mass spectroscopy to identify ancient and recent art forgeries. Physics 4(2):462472. doi: 10.3390/physics4020031 CrossRefGoogle Scholar
Beck, L et al. 2018. Absolute dating of lead carbonates in ancient cosmetics by radiocarbon. Communications Chemistry 1(1):17. doi: 10.1038/s42004-018-0034-y.CrossRefGoogle Scholar
Beck, L et al. 2022a. Detecting recent forgeries of Impressionist and Pointillist paintings with high-precision radiocarbon dating. Forensic Science International 333:111214. doi: 10.1016/j.forsciint.2022.111214.CrossRefGoogle ScholarPubMed
Beck, L et al. 2022b. Marine reservoir effect of spermaceti, a wax obtained from the head of the sperm whale: a first estimation from museum specimens. Radiocarbon 64(6):16071616. doi: 10.1017/RDC.2022.79 CrossRefGoogle Scholar
Beck, L, Alloin, E, Vigneron, A, Caffy, I, Klein, U. 2017. Ion beam analysis and AMS dating of the silver coin hoard of Preuschdorf (Alsace, France). Nuclear Instruments and Methods in Physics Research B 406:93–98. doi: 10.1016/j.nimb.2017.01.008 CrossRefGoogle Scholar
Beck, L, Caffy, I, Delqué-Količ, E, Dumoulin, J-P, Goulas, C, Hain, S, et al. 2023. 20 years of AMS 14C dating using the ARTEMIS facility at the LMC14 National Laboratory: review of service and research activities. Radiocarbon. doi: 10.1017/RDC.2023.23 CrossRefGoogle Scholar
Beck, L, Messager, C, Caffy, I, Delqué-Količ, E, Perron, M, Dumoulin, J-P, et al. 2020. Unexpected presence of 14C in inorganic pigment for an absolute dating of paintings. Scientific reports 10:9582. doi: 10.1038/s41598-020-65929-7.CrossRefGoogle ScholarPubMed
Beck, L, Messager, C, Coelho, S, Caffy, I, Delqué-Količ, E, Perron, M, et al. 2019. Thermal decomposition of lead white for radiocarbon dating of paintings. Radiocarbon 61(5):13451356. doi: 10.1017/RDC.2019.64 CrossRefGoogle Scholar
Bonnot-Diconne et al. 2021. La datation des cuirs dorés : confirmer et affiner la chronologie d’un objet d’art décoratif ? Technè 52:68–74. doi: 10.4000/techne.9969 CrossRefGoogle Scholar
Capano, M, Miramont, C, Guibal, F, Kromer, B, Tuna, T, Fagault, Y, Bard, E. 2018. Wood 14C dating with AixMICADAS: methods and application to tree-ring sequences from the Younger Dryas Event in the southern French Alps. Radiocarbon 60(1):5174. doi: 10.1017/rdc.2017.83 CrossRefGoogle Scholar
Daugbjerg, T, Lindroos, A, Hajdas, I, Ringbom, A, Olsen, J. 2021. Comparison of thermal decomposition and sequential dissolution—two sample preparation methods for radiocarbon dating of lime Mortars. Radiocarbon 63. doi: 10.1017/RDC.2020.144x CrossRefGoogle Scholar
Daux et al. 2022. The “forest” of Notre-Dame de Paris: a possible path into medieval climate and time. Journal of Cultural Heritage. doi: 10.1016/j.culher.2022.09.002 CrossRefGoogle Scholar
Dumoulin, JP, Comby-Zerbino, C, Delqué-Količ, E, Moreau, C, Caffy, I, Hain, S, et al. 2017. Status report on sample preparation protocols developed at the LMC14 Laboratory, Saclay, France: from sample collection to 14C AMS measurement. Radiocarbon 59:713726.CrossRefGoogle Scholar
Dumoulin, JP, Lebon, M, Caffy, I, Mauran, G, Nankela, A, Pleurdeau, D, Beck, L. 2020. Calcium oxalate radiocarbon dating: preliminary tests to date rock art of decorated open-air caves of Erongo Mountains in Namibia. Radiocarbon, 1–12. Doi:10.1017/RDC.2020.81CrossRefGoogle Scholar
Fogtmann-Schulz, A, Kudsk, SGK, Adolphi, F, Karoff, C, Knudsen, MF, Loader, NJ, et al. 2020. Batch processing of tree-ring samples for radiocarbon analysis. Radiocarbon 1–13. doi: 10.1017/rdc.2020.119 CrossRefGoogle Scholar
Garcia, N, Feranec, RS, Passey, BH, Cerling, TE, Arsuaga, JL. 2015. Exploring the potential of laser ablation carbon isotope analysis for examining ecology during the Ontogeny of Middle Pleistocene hominins from Sima de los Huesos (northern Spain). PLOS ONE 10:e0142895. doi: 10.1371/journal.pone.0142895 CrossRefGoogle Scholar
Gaudinski, JB, Dawson, TE, Quideau, S, Schuur, EAG, Roden, JS, Trumbore, SE, et al. 2005. Comparative analysis of cellulose preparation techniques for use with 13C, 14C, and 18O isotopic measurements. Analytical Chemistry 77(22):72127224. doi: 10.1021/ac050548u CrossRefGoogle ScholarPubMed
Heinemeier, J, Jungner, H, Lindroos, A, Ringbom, Å, von Konow, T, Rud, N. 1997. AMS C-14 dating of lime mortar. Nuclear Instruments & Methods in Physics Research B 123(1–4):487495.CrossRefGoogle Scholar
Heinemeier, J, Ringbom, Å, Lindroos, A, Sveinbjornsdottir, AE. 2010. Successful AMS C-14 dating of non-hydraulic lime mortars from the medieval churches of the Aland Islands, Finland. Radiocarbon 52(1):171204.CrossRefGoogle Scholar
Hendriks, L, Hajdas, I, Ferreira, E, Scherrer, N, Zumbühl, S, Küffner, M, et al. 2019. Selective dating of paint components: radiocarbon dating of lead white pigment. Radiocarbon 61(2):473493.CrossRefGoogle Scholar
Hendriks, L, Caseri, W, Ferreira, SB, Scherrer, NC, Zumbuhl, S, Kuffner, M, Hajdas, I, Wacker, L, Synal, H-A, Gunther, D. 2020a. The ins and outs of 14C dating lead white paint for artworks application. Analytical Chemistry 92(11):76747682. doi: 10.1021/acs.analchem.0c00530 CrossRefGoogle ScholarPubMed
Hendriks, L, Kradolfer, S, Lombardo, T, Hubert, V, Küffner, M, Khandekar, N, Hajdas, I, Synal, H., Hattendorf, B, Günther, D. 2020b. Dual isotope system analysis of lead white in artworks. The Analyst 145(4):13101318. Doi: 10.1039/C9AN02346A CrossRefGoogle Scholar
Jones, T, Levchenko, V, King, P, Troitzsch, U, Wesley, D, Williams, A, Nayingull, A. 2017. radiocarbon age constraints for a Pleistocene–Holocene transition rock art style: the northern running figures of the east Alligator River region, western Arnhem Land, Australia. Journal of Archaeological Science Reports 11:80–89. doi: 10.1016/j.jasrep.2016.11.016.CrossRefGoogle Scholar
Labeyrie, J, Delibrias, G. 1964. Dating of old mortars by carbon-14 method. Nature 201(492):742.CrossRefGoogle Scholar
Leavitt, SW, Danzer, SR. 1993. Method for batch processing small wood samples to holocellulose for stable-carbon isotope analysis. Analytical Chemistry 65(1):8789. doi: 10.1021/ac00049a017 CrossRefGoogle Scholar
Leroy, S, L’Héritier, M, Delqué-Kolic, E, Dumoulin, J-P, Moreau, C, Dillmann, P. 2015. Consolidation or initial design? Radiocarbon dating of ancient iron alloys sheds light on the reinforcements of French Gothic Cathedrals. Journal of Archaeological Science 53:190201 doi: 10.1016/j.jas.2014.10.016 CrossRefGoogle Scholar
Leroy, S, Delqué-Količ, E, Vincent, B, Baptiste, P, Vega, E, McGill, F, et al. 2021. Le fer comme moyen de datation des bronzes khmers : première approche de prélèvement in situ. Technè. La science au service de l’histoire de l’art et de la préservation des biens culturels 82–91. doi:10.4000/techne.10073 CrossRefGoogle Scholar
Lindroos, A, Regev, L, Oinonen, M, Ringbom, Å, Heinemeier, J. 2012. C-14 dating of fire damaged mortars from medieval Finland. Radiocarbon 54(3–4):915931.CrossRefGoogle Scholar
Messager, C et al. 2019. Datation par la méthode du radiocarbone de peintures au blanc de plomb apposées sur des cuirs dorés. In Proceedings of the 11th Interim Meeting of the ICOM-CC Leather and Related Materials Working Group. Publisher ICOM-CC. ISBN 978-2-491997-06-9.Google Scholar
Messager, C, Beck, L, de Viguerie, L, Jaber, M. 2020. Thermal analysis of carbonate pigments and linseed oil to optimize CO2 extraction for radiocarbon dating of lead white paintings. Microchemical Journal 154:104637. doi: 10.1016/j.microc.2020.104637 CrossRefGoogle Scholar
Messager, C, Beck, L, Blamart, D, Richard, P, Germain, T, Batur, K, Gonzalez, V, Foy, E. 2022. 25 centuries of lead white manufacturing processes identified by 13C and 14C carbon isotopes. Journal of Archaeological Science: Reports 46. doi: 10.1016/j.jasrep.2022.103685.CrossRefGoogle Scholar
Messager, C, Beck, L, Germain, T, Degrigny, C, Serneels, V, et al. 2021. Datation par la méthode du radiocarbone du blanc de plomb: du psimythion des cosmétiques antiques au pigment des peintures murales médiévales. Technè 52:102–110. doi: 10.4000/techne.10190.Google Scholar
Moreau, C, Messager, C, Berthier, B, Hain, S, Thellier, B, Dumoulin, J-P, et al. 2020. ARTEMIS, the 14C AMS facility of the LMC14 national laboratory: a status report on quality control and microsample procedures. Radiocarbon. doi: 10.1017/RDC.2020.73 CrossRefGoogle Scholar
Moreau, C, Dumoulin, J-P, Jaber, M, Caffy, I, Delqué-Količ, E, Goulas, C, Hain, S, Perron, M, Setti, V, Sieudat, M, et al. Forthcoming. Development of a 14C protocol at the LMC14 for the dating of cultural heritage materials: historical mortars. Participation in the MODIS international intercomparison campaign. Radiocarbon. doi: 10.1017/RDC.2023.118 Google Scholar
Němec, M, Wacker, L, Hajdas, I, Gäggeler, H. 2010. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52(3):13581370. doi: 10.1017/s0033822200046440 CrossRefGoogle Scholar
Quiles, A, Emerit, S, Asensi-Amorós, V, Beck, L, Caffy, I, Delque-Količ, E, Guichard, H. 2021. New chronometric insights into Ancient Egyptian musical instruments held at the musée du Louvre and the musée des beaux-arts de Lyon. Radiocarbon 63(2):545574. doi: 10.1017/RDC.2020.135 CrossRefGoogle Scholar
Reiche, I, Beck, L, Caffy, I. 2021. New results with regard to the Flora bust controversy: radiocarbon dating suggests nineteenth century origin. Sci. Rep. 11:8249. doi: 10.1038/s41598-021-85505-x CrossRefGoogle Scholar
Ricci, G, Secco, M, Marzaioli, F, Terrasi, F, Passariello, I, Addis, A, et al. 2020. The Cannero Castle (Italy): development of radiocarbon dating methodologies in the framework of the layered double hydroxide mortars. Radiocarbon 62(3):617631.CrossRefGoogle Scholar
Richard, B, Quilès, F, Carteret, C, Brendel, O. 2014. Infrared spectroscopy and multivariate analysis to appraise α-cellulose extracted from wood for stable carbon 88 isotope measurements. Chemical Geology 381:168179. doi: 10.1016/j.chemgeo.2014.05.010 CrossRefGoogle Scholar
Rinne, KT, Boettger, T, Loader, NJ, Robertson, I, Switsur, VR, Waterhouse, JS. 2005. On the purification of α-cellulose from resinous wood for stable isotope (H, C and O) analysis. Chemical Geology 222(1–2):7582. doi: 10.1016/j.chemgeo.2005.06.010 CrossRefGoogle Scholar
Rosenheim, BE, Thorrold, SR, Roberts, ML. 2008. Accelerator mass spectrometry 14C determination in CO2 produced from laser decomposition of aragonite. Rapid Commun. Mass. Spectrom. 22:34433449. doi: 10.1002/rcm.3745 CrossRefGoogle ScholarPubMed
Scott, EM. 2003. The Fourth International Radiocarbon Intercomparison (FIRI). Section 10: summary and conclusions. Radiocarbon 45(2):285290.Google Scholar
Scott, EM, Lindroos, A, Barrett, G, Boudin, M, Hajdas, I, Olsen, J, Maspero, F, Marzaioli, F, Michaska, Moreau C, Sironic, A, Forthcoming, Pawelczyk F.. Results and findings from an international mortar dating intercomparison MODIS2. Radiocarbon.Google Scholar
Scott, EM, Naysmith, P, Cook, G. 2017. Should archaeologists care about 14C intercomparisons? Why? A summary report on SIRI. Radiocarbon 59(5):15891596. doi: 10.1017/RDC.2017.12 CrossRefGoogle Scholar
Scott, EM, Naysmith, P, Dunbar, E. 2023. Preliminary results from the Glasgow International Radiocarbon Intercomparison (GIRI). Radiocarbon. doi: 10.1017/RDC.2023.64 CrossRefGoogle Scholar
Stuiver, M, Smith, C. 1965. Radiocarbon dating of ancient mortar and plaster. Washington, DC.Google Scholar
Watchman, AL, Lessard, RA, Jull, AJT, Toolin, LJ, Blake, W. 1992. 14C dating of laser-oxidized organics. Radiocarbon 35:331333. doi: 10.1017/S0033822200014090 CrossRefGoogle Scholar
Wilson, AT, Grinsted, MJ. 1977. 12C/13C in cellulose and lignin as palaeothermometers. Nature 265(5590):133135. doi: 10.1038/265133a0 CrossRefGoogle Scholar