Skip to main content Accessibility help
×
Home

Waist circumference, waist-to-height ratio and conicity index to evaluate android fat excess in Brazilian children

  • Mariana De Santis Filgueiras (a1), Sarah Aparecida Vieira (a1), Poliana Cristina de Almeida Fonseca (a1), Patrícia Feliciano Pereira (a1), Andréia Queiroz Ribeiro (a1), Silvia Eloiza Priore (a1), Sylvia do Carmo Castro Franceschini (a1) and Juliana Farias de Novaes (a1)...

Abstract

Objective

To evaluate the ability of anthropometric measurements to identify excess android fat and to propose cut-off points for excess central adiposity in children, according to age and sex.

Design

A cross-sectional study with children from a municipality of Minas Gerais, Brazil. Receiver-operating characteristic curve analyses were performed to evaluate waist circumference (WC), waist-to-height ratio (WHtR) and conicity index (C-index) in estimating excess android fat by dual energy X-ray absorptiometry (DXA).

Setting

Viçosa, Minas Gerais, Brazil.

Subjects

Children aged 4–9 years (n 788).

Results

Overweight prevalence was 29·1 % and android fat percentage was higher among girls. All central fat measurements were able to discriminate excess android fat in the age groups evaluated, especially WC and WHtR, with cut-off points showing good sensitivity and specificity overall.

Conclusions

Because these methods are easy to obtain and inexpensive, it is possible to use WC, WHtR and C-index in population surveys to evaluate central obesity. The proposed cut-off points showed satisfactory values of sensitivity and specificity and can be used in epidemiological studies.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Waist circumference, waist-to-height ratio and conicity index to evaluate android fat excess in Brazilian children
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Waist circumference, waist-to-height ratio and conicity index to evaluate android fat excess in Brazilian children
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Waist circumference, waist-to-height ratio and conicity index to evaluate android fat excess in Brazilian children
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email mariana.filgueiras@ufv.br

References

Hide All
1. Freedman, DS, Dietz, WH, Srinivasan, SS et al. (1999) The relation of overweight to cardiovascular risk factors among children and adolescents: the Bogalusa Heart Study. Pediatrics 103, 11751182.
2. Juonala, M, Magnussen, CG, Berenson, GS et al. (2011) Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Engl J Med 365, 18761885.
3. Savva, SC, Tornaritis, M, Savva, ME et al. (2000) Waist circumference and waist-to-height ratio are better predictors of cardiovascular disease risk factors in children than body mass index. Int J Obes Relat Metab Disord 24, 14531458.
4. Chiarelli, F & Marcovecchio, ML (2008) Insulin resistance and obesity in childhood. Eur J Endocrinol 159, Suppl. 1, S67S74.
5. Sjöström, CD, Håkangård, AC, Lissner, L et al. (1995) Body compartment and subcutaneous adipose tissue distribution-risk factor patterns in obese subjects. Obes Res 3, 922.
6. Goran, MI, Gower, BA, Treuth, M et al. (1998) Prediction of intra-abdominal and subcutaneous abdominal adipose tissue in healthy prepubertal children. Int J Obes Relat Metab Disord 22, 549558.
7. Daniels, SR, Morrison, JA, Sprecher, DL et al. (1999) Association of body fat distribution and cardiovascular risk factors in children and adolescents. Circulation 99, 541545.
8. Freedman, DS, Serdula, MK, Srinivasan, SR et al. (1999) Relation of circumferences and skinfold thicknesses to lipid and insulin concentrations in children and adolescents: the Bogalusa Heart study. Am J Clin Nutr 69, 308317.
9. Gillum, RF (1999) Distribution of waist-to-hip ratio, other indices of body fat distribution and obesity and associations with HDL cholesterol in children and young adults ages 4–19 years: the Third National Health and Nutrition Examination Survey. Int J Obes Relat Metab Disord 23, 556563.
10. Gower, BA, Nagy, TR & Goran, MI (1999) Visceral fat, insulin sensitivity and lipids in prepubertal children. Diabetes 48, 15151521.
11. Taylor, RW, Jones, IE, Williams, SM et al. (2000) Evaluation of waist circumference, waist-to-hip ratio, and the conicity index as screening tools for high trunk fat mass, as measured by dual-energy X-ray absorptiometry, in children aged 3–19 y. Am J Clin Nutr 72, 490495.
12. Goulding, A, Taylor, RW, Gold, E et al. (1996) Regional body fat distribution in relation to pubertal stage: a dual-energy X-ray absorptiometry study of New Zealand girls and young women. Am J Clin Nutr 64, 546551.
13. Mazess, RB, Barden, HS & Hanson, J (1990) Dual-energy X-ray absorptiometry for total body and regional bone-mineral and soft-tissue composition. Am J Clin Nutr 51, 11061112.
14. Redondo, O, Villamor, E, Valdés, J et al. (2015) Validation of a BMI cut-off point to predict an adverse cardiometabolic profile with adiposity measurements by dual-energy X-ray absorptiometry in Guatemalan children. Public Health Nutr 18, 951958.
15. Ogden, CL, Carroll, MD, Kit, BK et al. (2012) Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA 307, 483490.
16. Shah, NR & Braverman, ER (2012) Measuring adiposity in patients: the utility of body mass index (BMI), percent body fat, and leptin. PLoS One 7, e33308.
17. Schroder, H, Ribas, L, Koebnick, C et al. (2014) Prevalence of abdominal obesity in Spanish children and adolescents. Do we need waist circumference measurements in pediatric practice? PLoS One 9, e87549.
18. Pereira, PF, Serrano, HMS, Carvalho, GQ et al. (2015) Measurements of body fat distribution: assessment of collinearity with body mass, adiposity and height in female adolescents. Rev Paul Pediatr 33, 6371.
19. Blüher, S, Molz, E, Wiegand, S et al.; Adiposity Patients Registry Initiative and German Competence Net Obesity (2013) Body mass index, waist circumference, and waist-to-height ratio as predictors of cardiometabolic risk in childhood obesity depending on pubertal development. J Clin Endocrinol Metab 98, 33843393.
20. Gröber-Grätz, D, Widhalm, K, de Zwaan, M et al. (2013) Body mass index or waist circumference: which is the better predictor for hypertension and dyslipidemia in overweight/obese children and adolescents? Association of cardiovascular risk related to body mass index or waist circumference. Horm Res Paediatr 80, 170178.
21. Andaki, ACR, Tinôco, ALA, Mendes, EL et al. (2014) Anthropometry and physical activity level in the prediction of metabolic syndrome in children. Public Health Nutr 17, 22872294.
22. Neta, ACPA, Farias, Júnior JC, Martins, PR et al. (2017) Índice de conicidade como preditor de alterações no perfil lipídico em adolescentes de uma cidade do Nordeste do Brasil. Cad Saude Publica 33, e00029316.
23. Valdez, R (1991) A simple model-based index of abdominal adiposity. J Clin Epidemiol 44, 955956.
24. Instituto Brasileiro de Geografia e Estatística (2010) Censo cidades. http://www.ibge.gov.br/cidadesat/topwindow.htm?1 (accessed August 2014)
25. Novaes, JF, Priore, SE, Franceschini, SCC et al. (2013) Does the body mass index reflect cardiovascular risk factors in Brazilian children? J Trop Pediatr 59, 4348.
26. Jelliffe, DB (1968) Evaluación del Estado de Nutrición de la Comunidad. OMS Série Monografias no. 53. Ginebra: Organización Mundial de Salud.
27. World Health Organization (2006) The WHO Child Growth Standards. Geneva: WHO.
28. World Health Organization (2007) Growth Reference Data for 519 Years . Geneva: WHO.
29. Brasil, Ministério da Saúde (2009) Sistema de Vigilância Alimentar e Nutricional (Sisvan): Classificação do Estado Nutricional. http://189.28.128.100/nutricao/docs/geral/sisvan_norma_tecnica_criancas.pdf (accessed December 2015)
30. Lohman, TG, Roche, AF & Martorell, R (1988) Anthropometric Standardization Reference Manual. Champaign, IL: Human Kinetics Books.
31. Ashwell, M & Hsieh, SD (2005) Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. Int J Food Sci Nutr 56, 303307.
32. Björntorp, P (1992) Abdominal fat distribution and the metabolic syndrome. J Cardiovasc Pharmacol 20, 526528.
33. Samsell, L, Regier, M, Walton, C et al. (2014) Importance of android/gynoid fat ratio in predicting metabolic and cardiovascular disease risk in normal weight as well as overweight and obese children. J Obes 2014, 846578.
34. Aucouturier, J, Meyer, M, Thivel, D et al. (2009) Effect of android to gynoid fat ratio on insulin resistance in obese youth. Arch Pediatr Adolesc 163, 826831.
35. Kuk, JL, Lee, S, Heymsfield, SB et al. (2005) Waist circumference and abdominal adipose tissue distribution: influence of age and sex. Am J Clin Nutr 81, 13301334.
36. Melzer, MRTF, Magrini, IM, Domene, SMA et al. (2015) Factors associated with abdominal obesity in children. Rev Paul Pediatr 33, 437444.
37. Frignani, RR, Passos, MAZ, Ferrari, GLM et al. (2015) Reference curves of the body fat index in adolescents and their association with anthropometric variables. J Pediatr (Rio J) 91, 248255.
38. Taylor, RW, Gold, E, Manning, P et al. (1997) Gender differences in body fat content are present well before puberty. Int J Obes Relat Metab Disord 21, 10821084.
39. Lean, ME, Han, TS & Morrison, CE (1995) Waist circumference as a measure for indicating need for weight management. BMJ 311, 158161.
40. Fernández, JR, Redden, DT, Pietrobelli, A et al. (2004) Waist circumference percentiles in nationally representative samples of African-American, European-American, and Mexican-American children and adolescents. J Pediatr 145, 439444.
41. McCarthy, HD, Jarrett, KV & Crawley, HF (2001) The development of waist circumference percentiles in British children aged 5.0–16.9 y. Eur J Clin Nutr 55, 902907.
42. Sardinha, LB, Santos, DA, Silva, AM et al. (2016) A comparison between BMI, waist circumference, and waist-to-height ratio for identifying cardio-metabolic risk in children and adolescents. PLoS One 11, e0149351.
43. Li, C, Ford, ES, Mokdad, AH et al. (2006) Recent trends in waist circumference and waist-height ratio among US children and adolescents. Pediatrics 118, e1390e1398.
44. McCarthy, HD & Ashwell, M (2006) A study of central fatness using waist-to-height ratios in UK children and adolescents over two decades supports the simple message – ‘keep your waist circumference to less than half your height’. Int J Obes (Lond) 30, 988992.
45. Pérez, B, Landaeta-Jimenez, M & Vasquez, M (2002) Fat distribution in Venezuelan children and adolescents estimated by the conicity index and waist/hip ratio. Am J Hum Biol 14, 1520.

Keywords

Waist circumference, waist-to-height ratio and conicity index to evaluate android fat excess in Brazilian children

  • Mariana De Santis Filgueiras (a1), Sarah Aparecida Vieira (a1), Poliana Cristina de Almeida Fonseca (a1), Patrícia Feliciano Pereira (a1), Andréia Queiroz Ribeiro (a1), Silvia Eloiza Priore (a1), Sylvia do Carmo Castro Franceschini (a1) and Juliana Farias de Novaes (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed