Skip to main content Accessibility help
×
Home

Validation of protein intake assessed from weighed dietary records against protein estimated from 24 h urine samples in children, adolescents and young adults participating in the Dortmund Nutritional and Longitudinally Designed (DONALD) Study

  • Beate Bokhof (a1) (a2), Anke LB Günther (a1) (a3), Gabriele Berg-Beckhoff (a4), Anja Kroke (a2) and Anette E Buyken (a1)...

Abstract

Objective

To date, only a few nutritional assessment methods have been validated against the biomarker of urinary-N excretion for use in children and adolescents. The aim of the present study was to validate protein intake from one day of a weighed dietary record against protein intake estimated from a simultaneously collected 24 h urine sample.

Design

Cross-sectional analyses including 439 participants of the Dortmund Nutritional and Longitudinally Designed (DONALD) Study from four age groups (3–4, 7–8, 11–13 and 18–23 years). Mean differences, Pearson correlation coefficients (r), cross-classifications and Bland–Altman plots were used to assess agreement between methods.

Results

Weighed dietary records significantly underestimated mean protein intake by −6·4 (95 % CI −8·2, −4·7) g/d or –11 %, with the difference increasing across the age groups from −0·6 (95 % CI −2·7, 1·5) g/d at age 3–4 years to –13·5 (95 % CI –18·7, –8·3) g/d at age 18–23 years. Correlation coefficients were r = 0·7 for the total study sample and ranged from r = 0·5 to 0·6 in the different age groups. Both methods classified 85 % into the same/adjacent quartile for the whole study group (83–86 % for the different age groups) and 2·5 % into the opposite quartile (1·9–3·1 % for the different age groups). Bland–Altman plots for the total sample indicated that differences in protein intake increased across the range of protein intake, while this bias was not obvious within the age groups.

Conclusions

Protein intake in children and adolescents can be estimated with acceptable validity by weighed dietary records. In this age-heterogeneous sample, validity was lower among adolescents and young adults.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Validation of protein intake assessed from weighed dietary records against protein estimated from 24 h urine samples in children, adolescents and young adults participating in the Dortmund Nutritional and Longitudinally Designed (DONALD) Study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Validation of protein intake assessed from weighed dietary records against protein estimated from 24 h urine samples in children, adolescents and young adults participating in the Dortmund Nutritional and Longitudinally Designed (DONALD) Study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Validation of protein intake assessed from weighed dietary records against protein estimated from 24 h urine samples in children, adolescents and young adults participating in the Dortmund Nutritional and Longitudinally Designed (DONALD) Study
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email buyken@fke-do.de

References

Hide All
1. Mensink, GB & Burger, M (2004) What do you eat? Food frequency questionnaire for children and adolescents. Bundesgesundheitsblatt 47, 219226.
2. Oja, P (1997) Health-related physical activity and fitness among European children and adolescents. World Rev Nutr Diet 81, 98104.
3. Alexy, U, Sichert-Hellert, W & Kersting, M (2002) Fifteen-year time trends in energy and macronutrient intake in German children and adolescents: results of the DONALD study. Br J Nutr 87, 595604.
4. Sichert-Hellert, W, Kersting, M & Schoch, G (1998) Underreporting of energy intake in 1 to 18 year old German children and adolescents. Z Ernahrungswiss 37, 242251.
5. Bandini, LG, Must, A, Cyr, H et al. (2003) Longitudinal changes in the accuracy of reported energy intake in girls 10–15 y of age. Am J Clin Nutr 78, 480484.
6. Bingham, SA (2003) Urine nitrogen as a biomarker for the validation of dietary protein intake. J Nutr 133, Suppl. 3, 921S924S.
7. Kroke, A, Manz, F, Kersting, M et al. (2004) The DONALD Study. History, current status and future perspectives. Eur J Nutr 43, 4554.
8. Remer, T, Neubert, A & Maser-Gluth, C (2002) Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. Am J Clin Nutr 75, 561569.
9. Sichert-Hellert, W, Kersting, M, Chada, C et al. (2007) German food composition data base for dietary evaluations in children and adolescents. J Food Compos Anal 20, 6370.
10. Gibson, R (2005) Validity in dietary assessment methods. In Principles of Nutritional Assessment, pp. 147196 [R Gibson, editor]. New York: Oxford University Press.
11. Garlick, PJ (2006) Protein requirements of infants and children. Nestle Nutr Workshop Ser Pediatr Program 58, 3947.
12. Kromeyer-Hauschild, K, Wabitsch, M, Kunze, D et al. (2001) Perzentile für den Body-mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilkd 149, 807818.
13. Deurenberg, P, Pieters, JJ & Hautvast, JG (1990) The assessment of the body fat percentage by skinfold thickness measurements in childhood and young adolescence. Br J Nutr 63, 293303.
14. Cole, TJ, Bellizzi, MC, Flegal, KM et al. (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320, 12401243.
15. Willett, W & Stampfer, M (1998) Implications of total energy intake for epidemiologic analyses. In Nutritional Epidemiology, pp. 273301 [W Willett, editor]. New York: Oxford University Press.
16. Bland, JM & Altman, DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1, 307310.
17. Bland, JM & Altman, DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8, 135160.
18. Grouven, U, Bender, R, Ziegler, A et al. (2007) Comparing methods of measurement. Dtsch Med Wochenschr 132, Suppl. 1, e69e73.
19. Hackett, AF, Morton, S, McCowen, C et al. (1987) Measurement of food intake in children with diabetes mellitus: a comparison of protein intake and urine nitrogen. Diabetes Res 6, 2932.
20. Wingen, AM, Fabian-Bach, C & Mehls, O (1993) Evaluation of protein intake by dietary diaries and urea-N excretion in children with chronic renal failure. European Study Group for Nutritional Treatment of Chronic Renal Failure in Childhood. Clin Nephrol 40, 208215.
21. Bingham, SA, Cassidy, A, Cole, TJ et al. (1995) Validation of weighed records and other methods of dietary assessment using the 24 h urine nitrogen technique and other biological markers. Br J Nutr 73, 531550.
22. Black, AE, Welch, AA & Bingham, SA (2000) Validation of dietary intakes measured by diet history against 24 h urinary nitrogen excretion and energy expenditure measured by the doubly-labelled water method in middle-aged women. Br J Nutr 83, 341354.
23. Kroke, A, Klipstein-Grobusch, K, Voss, S et al. (1999) Validation of a self-administered food-frequency questionnaire administered in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study: comparison of energy, protein, and macronutrient intakes estimated with the doubly labeled water, urinary nitrogen, and repeated 24-h dietary recall methods. Am J Clin Nutr 70, 439447.
24. Lietz, G, Barton, KL, Longbottom, PJ et al. (2002) Can the EPIC food-frequency questionnaire be used in adolescent populations? Public Health Nutr 5, 783789.
25. Livingstone, MB & Black, AE (2003) Markers of the validity of reported energy intake. J Nutr 133, Suppl. 3, 895S920S.
26. Block, G (2001) Invited commentary: another perspective on food frequency questionnaires. Am J Epidemiol 154, 11031104.
27. Cade, JE, Burley, VJ, Warm, DL et al. (2004) Food-frequency questionnaires: a review of their design, validation and utilisation. Nutr Res Rev 17, 522.
28. Bingham, SA & Cummings, JH (1985) Urine nitrogen as an independent validatory measure of dietary intake: a study of nitrogen balance in individuals consuming their normal diet. Am J Clin Nutr 42, 12761289.
29. Kersting, M, Sichert-Hellert, W, Alexy, U et al. (1998) Macronutrient intake of 1 to 18 year old German children and adolescents. Z Ernahrungswiss 37, 252259.

Keywords

Validation of protein intake assessed from weighed dietary records against protein estimated from 24 h urine samples in children, adolescents and young adults participating in the Dortmund Nutritional and Longitudinally Designed (DONALD) Study

  • Beate Bokhof (a1) (a2), Anke LB Günther (a1) (a3), Gabriele Berg-Beckhoff (a4), Anja Kroke (a2) and Anette E Buyken (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed