Skip to main content Accessibility help
×
Home

Stroke and food groups: an overview of systematic reviews and meta-analyses

  • Cuiyu Deng (a1), Qi Lu (a2), Bingyan Gong (a2), Liya Li (a2), Lianxia Chang (a3), Li Fu (a1) and Yue Zhao (a2)...

Abstract

Objective

Numerous systematic reviews of prospective studies on the association of stroke risk with the consumption of various food groups have been published. A review of the evidence across the existing systematic reviews and meta-analyses of prospective studies was conducted to provide an overview of the range and validity of the reported associations of food groups with stroke risk.

Design

The PubMed, EMBASE and Cochrane Library databases were searched for articles published up to September 2015 to identify systematic reviews of prospective studies.

Results

A total of eighteen studies published from 2008 to 2015 were eligible for analysis. Overall, thirteen specific foods were studied for an association with stroke outcome, including nuts, legumes, fruits and vegetables, refined grains, whole grains, dairy products, eggs, chocolate, red and/or processed meat, fish, tea, sugar-sweetened beverages and coffee. Whereas a high consumption of nuts, fruits, vegetables, dairy foods, fish and tea, and moderate consumption of coffee and chocolate demonstrated a protective effect, a high consumption of red and/or processed meat was associated with increased stroke risk. Refined grain, sugar-sweetened beverage, legume, egg and whole grain intake showed no effect on stroke outcome.

Conclusions

The current overview provided a high level of evidence to support the beneficial effect of specific foods on stroke outcome. Clinicians and policy makers could inform clinical practice and policy based on this overview.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Stroke and food groups: an overview of systematic reviews and meta-analyses
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Stroke and food groups: an overview of systematic reviews and meta-analyses
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Stroke and food groups: an overview of systematic reviews and meta-analyses
      Available formats
      ×

Copyright

Corresponding author

*Corresponding authors: Email fuli9338@sina.com and yuezhaotjmedu@163.com

Footnotes

Hide All

Cuiyu Deng and Qi Lu contributed equally to this work.

Footnotes

References

Hide All
1. Yang, G, Wang, Y, Zeng, Y et al. (2013) Rapid health transition in China, 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 381, 19872015.
2. Meschia, JF, Bushnell, C, Boden-Albala, B et al. (2014) Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 45, 37543832.
3. Hu, D, Huang, J, Wang, Y et al. (2014) Fruits and vegetables consumption and risk of stroke: a meta-analysis of prospective cohort studies. Stroke 45, 16131619.
4. Kaluza, J, Wolk, A & Larsson, SC (2012) Red meat consumption and risk of stroke: a meta-analysis of prospective studies. Stroke 43, 25562560.
5. Xun, P, Qin, B, Song, Y et al. (2012) Fish consumption and risk of stroke and its subtypes: accumulative evidence from a meta-analysis of prospective cohort studies. Eur J Clin Nutr 66, 11991207.
6. Zhang, Z, Xu, G, Wei, Y et al. (2015) Nut consumption and risk of stroke. Eur J Epidemiol 30, 189196.
7. Zhang, R, Wang, Y, Song, B et al. (2012) Coffee consumption and risk of stroke: a meta-analysis of cohort studies. Cent Eur J Med 7, 310316.
8. Hu, D, Huang, J, Wang, Y et al. (2014) Dairy foods and risk of stroke: a meta-analysis of prospective cohort studies. Nutr Metab Cardiovasc Dis 24, 460469.
9. Sherzai, A, Heim, LT, Boothby, C et al. (2012) Stroke, food groups, and dietary patterns: a systematic review. Nutr Rev 70, 423435.
10. Moher, D, Liberati, A, Tetzlaff, J et al. (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8, 336341.
11. Shea, BJ, Hamel, C, Wells, GA et al. (2009) AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. J Clin Epidemiol 62, 10131020.
12. Shi, ZQ, Tang, JJ, Wu, H et al. (2014) Consumption of nuts and legumes and risk of stroke: a meta-analysis of prospective cohort studies. Nutr Metab Cardiovasc Dis 24, 12621271.
13. He, FJ, Nowson, CA & MacGregor, GA (2006) Fruit and vegetable consumption and stroke: meta-analysis of cohort studies. Lancet 367, 320326.
14. Dauchet, L, Amouyel, P & Dallongeville, J (2005) Fruit and vegetable consumption and risk of stroke: a meta-analysis of cohort studies. Neurology 65, 11931197.
15. Wu, D, Guan, Y, Lv, S et al. (2015) No evidence of increased risk of stroke with consumption of refined grains: a meta-analysis of prospective cohort studies. J Stroke Cerebrovasc Dis 24, 27382746.
16. Mellen, PB, Walsh, TF & Herrington, DM (2008) Whole grain intake and cardiovascular disease: a meta-analysis. Nutr Metab Cardiovasc Dis 18, 283290.
17. Qin, LQ, Xu, JY, Han, SF et al. (2015) Dairy consumption and risk of cardiovascular disease: an updated meta-analysis of prospective cohort studies. Asia Pac J Clin Nutr 24, 90100.
18. Rong, Y, Chen, L, Zhu, T et al. (2013) Egg consumption and risk of coronary heart disease and stroke: dose–response meta-analysis of prospective cohort studies. BMJ 346, e8539.
19. Larsson, SC, Virtamo, J & Wolk, A (2012) Chocolate consumption and risk of stroke: a prospective cohort of men and meta-analysis. Neurology 79, 12231229.
20. Chen, GC, Lv, DB, Pang, Z et al. (2013) Red and processed meat consumption and risk of stroke: a meta-analysis of prospective cohort studies. Eur J Clin Nutr 67, 9195.
21. He, K, Song, Y, Daviglus, ML et al. (2004) Fish consumption and incidence of stroke: a meta-analysis of cohort studies. Stroke 35, 15381542.
22. Larsson, SC & Orsini, N (2011) Fish consumption and the risk of stroke: a dose–response meta-analysis. Stroke 42, 36213623.
23. Zhang, C, Qin, YY, Wei, X et al. (2015) Tea consumption and risk of cardiovascular outcomes and total mortality: a systematic review and meta-analysis of prospective observational studies. Eur J Epidemiol 30, 103113.
24. Shen, L, Song, LG, Ma, H et al. (2012) Tea consumption and risk of stroke: a dose–response meta-analysis of prospective studies. J Zhejiang Univ Sci B 13, 652662.
25. Xi, B, Huang, Y, Reilly, KH et al. (2015) Sugar-sweetened beverages and risk of hypertension and CVD: a dose–response meta-analysis. Br J Nutr 113, 709717.
26. Ding, M, Bhupathiraju, SN, Satija, A et al. (2014) Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose–response meta-analysis of prospective cohort studies. Circulation 129, 643659.
27. Larsson, SC & Orsini, N (2011) Coffee consumption and risk of stroke: a dose–response meta-analysis of prospective studies. Am J Epidemiol 174, 9931001.
28. Grundy, SM & Denke, MA (1990) Dietary influences on serum lipids and lipoproteins. J Lipid Res 31, 11491172.
29. Beyer, FR, Dickinson, HO, Nicolson, DJ et al. (2006) Combined calcium, magnesium and potassium supplementation for the management of primary hypertension in adults. Cochrane Database Syst Rev issue 3, CD004805.
30. Wang, X, Qin, X, Demirtas, H et al. (2007) Efficacy of folic acid supplementation in stroke prevention: a meta-analysis. Lancet 369, 18761882.
31. Streppel, MT, Arends, LR, van ’t Veer, P et al. (2005) Dietary fiber and blood pressure: a meta-analysis of randomized placebo-controlled trials. Arch Intern Med 165, 150156.
32. Zhang, Z, Xu, G, Liu, D et al. (2013) Dietary fiber consumption and risk of stroke. Eur J Epidemiol 28, 119130.
33. He, K (2009) Fish, long-chain omega-3 polyunsaturated fatty acids and prevention of cardiovascular disease – eat fish or take fish oil supplement? Prog Cardiovasc Dis 52, 95114.
34. Calder, PC (2004) n-3 Fatty acids and cardiovascular disease: evidence explained and mechanisms explored. Clin Sci (Lond) 107, 111.
35. Babu, PV & Liu, D (2008) Green tea catechins and cardiovascular health: an update. Curr Med Chem 15, 18401850.
36. Natsume, M, Osakabe, N, Yamagishi, M et al. (2000) Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC. Biosci Biotechnol Biochem 64, 25812587.
37. Foroughi, M, Akhavanzanjani, M, Maghsoudi, Z et al. (2013) Stroke and nutrition: a review of studies. Int J Prev Med 4, Suppl. 2, S165S179.

Keywords

Type Description Title
WORD
Supplementary materials

Deng et al supplementary material
Deng et al supplementary material 1

 Word (14 KB)
14 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed