Skip to main content Accessibility help

Socio-economic differences in cardiometabolic risk markers are mediated by diet and body fatness in 8- to 11-year-old Danish children: a cross-sectional study

  • Hanne Hauger (a1), Margit V Groth (a2), Christian Ritz (a1), Anja Biltoft-Jensen (a2), Rikke Andersen (a2), Stine-Mathilde Dalskov (a1), Mads F Hjorth (a1), Anders Sjödin (a1), Arne Astrup (a1), Kim F Michaelsen (a1) and Camilla T Damsgaard (a1)...



To explore whether socio-economic differences exist in cardiometabolic risk markers in children and whether lifestyle-related factors potentially mediate these differences.


Cross-sectional study including measurements of fasting blood lipids, glucose, homeostasis model assessment of insulin resistance (HOMA-IR), blood pressure and heart rate. Potential mediators examined were fat mass index (FMI); intakes of fruit, vegetables, dietary fibre and added sugar; whole-blood n-3 long-chain PUFA (LCPUFA) as a biomarker of fish intake; and physical activity and sedentary time.


Nine primary schools in Denmark.


Children aged 8–11 years (n 715).


Children of parents with the shortest compared with longest education had higher TAG by 0·12 (95 % CI 0·04, 0·21) mmol/l and HOMA-IR by 0·36 (0·10, 0·62), whereas children of parents with a vocational education had higher total cholesterol by 0·14 (0·02, 0·27) mmol/l and LDL cholesterol by 0·14 (0·03, 0·25) mmol/l compared with children of parents with the longest education; all P<0·05. FMI explained 25 % of the difference in TAG, 64 % of the difference in HOMA-IR and 21–29 % of the differences in cholesterols. FMI and whole-blood n-3 LCPUFA combined explained 42 % of the difference in TAG, whereas FMI, whole-blood n-3 LCPUFA and dietary fibre explained 89 % of the difference in HOMA-IR.


Socio-economic differences were present in blood lipids and insulin resistance among 8- to 11-year-olds and were mediated by body fatness, whole-blood n-3 LCPUFA and dietary fibre. These lifestyle factors may be targets in public initiatives to reduce socio-economic differences. Confirmation in longitudinal studies and trials is warranted.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Socio-economic differences in cardiometabolic risk markers are mediated by diet and body fatness in 8- to 11-year-old Danish children: a cross-sectional study
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Socio-economic differences in cardiometabolic risk markers are mediated by diet and body fatness in 8- to 11-year-old Danish children: a cross-sectional study
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Socio-economic differences in cardiometabolic risk markers are mediated by diet and body fatness in 8- to 11-year-old Danish children: a cross-sectional study
      Available formats


Corresponding author

*Corresponding author: Email


Hide All
1. Mackenbach, JP, Stirbu, I, Roskam, AR et al. (2008) Socioeconomic inequalities in health in 22 European countries. N Engl J Med 358, 24682481.
2. Berenson, G, Srinivasan, S, Bao, W et al. (1998) Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. N Engl J Med 338, 16501656.
3. Juhola, J, Magnussen, CG, Viikari, JSA et al. (2011) Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: the Cardiovascular Risk in Young Finns Study. J Pediatr 159, 584590.
4. Pollitt, RA, Rose, KM & Kaufman, JS (2005) Evaluating the evidence for models of life course socioeconomic factors and cardiovascular outcomes: a systematic review. BMC Public Health 5, 7.
5. Howe, L, Galobardes, B, Sattar, N et al. (2010) Are there socioeconomic inequalities in cardiovascular risk factors in childhood, and are they mediated by adiposity? Findings from a prospective cohort study. Int J Obes (Lond) 34, 11491159.
6. Lawlor, DA, Harro, M, Wedderkopp, N et al. (2005) Association of socioeconomic position with insulin resistance among children from Denmark, Estonia, and Portugal: cross sectional study. BMJ 331, 183.
7. van den Berg, G, van Eijsden, M, Vrijkotte, TG et al. (2012) Socioeconomic inequalities in lipid and glucose metabolism in early childhood in a population-based cohort: the ABCD-Study. BMC Public Health 12, 591.
8. Goodman, E, McEwen, BS, Huang, B et al. (2005) Social inequalities in biomarkers of cardiovascular risk in adolescence. Psychosom Med 67, 915.
9. Weiss, R, Dziura, J, Burgert, TS et al. (2004) Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 350, 23622374.
10. Shrewsbury, V & Wardle, J (2008) Socioeconomic status and adiposity in childhood: a systematic review of cross‐sectional studies 1990–2005. Obesity (Silver Spring) 16, 275284.
11. Goodman, E, Must, A, Daniels, SR et al. (2010) Hostility and adiposity mediate disparities in insulin resistance among adolescents and young adults. J Pediatr 157, 572577.
12. Wells, J, Cole, T & ALSPAC study team (2002) Adjustment of fat-free mass and fat mass for height in children aged 8 y. Int J Obes Relat Metab Disord 26, 947952.
13. Ambrosini, GL, Huang, RC, Mori, TA et al. (2010) Dietary patterns and markers for the metabolic syndrome in Australian adolescents. Nutr Metab Cardiovasc Dis 20, 274283.
14. Brauchla, M, Juan, W, Story, J et al. (2012) Sources of dietary fiber and the association of fiber intake with childhood obesity risk (in 2–18 year olds) and diabetes risk of adolescents 12–18 year olds: NHANES 2003–2006. J Nutr Metab 2012, 736258.
15. Hartley, L, Igbinedion, E, Holmes, J et al. (2013) Increased consumption of fruit and vegetables for the primary prevention of cardiovascular diseases. Cochrane Database Syst Rev 6, CD009874.
16. Whelton, SP, Hyre, AD, Pedersen, B et al. (2005) Effect of dietary fiber intake on blood pressure: a meta-analysis of randomized, controlled clinical trials. J Hypertens 23, 475481.
17. He, K, Song, Y, Daviglus, ML et al. (2004) Accumulated evidence on fish consumption and coronary heart disease mortality: a meta-analysis of cohort studies. Circulation 109, 27052711.
18. Kotwal, S, Jun, M, Sullivan, D et al. (2012) Omega 3 fatty acids and cardiovascular outcomes systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes 5, 808818.
19. Brug, J, van Stralen, MM, te Velde, SJ et al. (2012) Differences in weight status and energy-balance related behaviors among schoolchildren across Europe: the ENERGY-Project. PLoS One 7, e34742.
20. Rasmussen, M, Krølner, R, Klepp, K et al. (2006) Determinants of fruit and vegetable consumption among children and adolescents: a review of the literature. Part I: quantitative studies. Int J Behav Nutr Phys Act 3, 22.
21. Ekelund, U, Luan, J, Sherar, LB et al. (2012) Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA 307, 704712.
22. Ford, ES & Caspersen, CJ (2012) Sedentary behaviour and cardiovascular disease: a review of prospective studies. Int J Epidemiol 41, 13381353.
23. Damsgaard, CT, Dalskov, S, Petersen, RA et al. (2012) Design of the OPUS School Meal Study: a randomised controlled trial assessing the impact of serving school meals based on the New Nordic Diet. Scand J Public Health 40, 693703.
24. Groth, MV, Fagt, S, Stockmarr, A et al. (2009) Dimensions of socioeconomic position related to body mass index and obesity among Danish women and men. Scand J Public Health 37, 418426.
25. Groth, M, Christensen, L, Knudsen, V et al. (2013) Social Differences in Children’s Dietary Habits, Physical Activity and Overweight, and Adult’s Dietary Habits. Copenhagen: Technical University of Denmark, National Food Institute, Division of Nutrition (in Danish with an English summary).
26. Winkleby, MA, Jatulis, DE, Frank, E et al. (1992) Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. Am J Public Health 82, 816820.
27. Statistics Denmark (2008) Forspalte 1 – uddannelsesnomenklaturer (Standard classifications of education). (accessed July 2013).
28. Morris, NM & Udry, JR (1980) Validation of a self-administered instrument to assess stage of adolescent development. J Youth Adolesc 9, 271280.
29. Biltoft‐Jensen, A, Trolle, E, Christensen, T et al. (2014) WebDASC: a web‐based dietary assessment software for 8–11‐year‐old Danish children. J Hum Nutr Diet 27, Suppl. 1, 4353.
30. Henry, CJK (2005) Basal metabolic rate studies in humans: measurement and development of new equations. Public Health Nutr 8, 11331152.
31. Black, AE (2000) The sensitivity and specificity of the Goldberg cut-off for EI:BMR for identifying diet reports of poor validity. Eur J Clin Nutr 54, 395404.
32. Hjorth, MF, Chaput, J, Michaelsen, K et al. (2013) Seasonal variation in objectively measured physical activity, sedentary time, cardio-respiratory fitness and sleep duration among 8–11 year-old Danish children: a repeated-measures study. BMC Public Health 13, 808.
33. Trost, SG, Loprinzi, PD, Moore, R et al. (2011) Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc 43, 13601368.
34. de Onis, M., Onyango, AW, Borghi, E et al. (2007) Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 85, 660667.
35. Cole, TJ, Flegal, KM, Nicholls, D et al. (2007) Body mass index cut offs to define thinness in children and adolescents: international survey. BMJ 335, 194.
36. Cole, TJ, Bellizzi, MC, Flegal, KM et al. (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320, 12401243.
37. Damsgaard, CT, Dalskov, S, Laursen, RP et al. (2014) Provision of healthy school meals does not affect the metabolic syndrome score in 8–11-year-old children, but reduces cardiometabolic risk markers despite increasing waist circumference. Br J Nutr 112, 18261836.
38. Damsgaard, CT, Eidner, MB, Stark, KD et al. (2014) Eicosapentaenoic acid and docosahexaenoic acid in whole blood are differentially and sex-specifically associated with cardiometabolic risk markers in 8–11-year-old Danish children. PLoS One 9, e109368.
39. Baron, RM & Kenny, DA (1986) The moderator–mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol 51, 11731182.
40. Laursen, RP, Dalskov, S, Damsgaard, CT et al. (2014) Back-transformation of treatment differences – an approximate method. Eur J Clin Nutr 68, 277280.
41. R Core Team (2013) A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; available at
42. Mozaffarian, D & Wu, JH (2011) Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol 58, 20472067.
43. López-Alarcón, M, Martínez-Coronado, A, Velarde-Castro, O et al. (2011) Supplementation of n3 long-chain polyunsaturated fatty acid synergistically decreases insulin resistance with weight loss of obese prepubertal and pubertal children. Arch Med Res 42, 502508.
44. Kirby, A, Woodward, A, Jackson, S et al. (2010) Children’s learning and behaviour and the association with cheek cell polyunsaturated fatty acid levels. Res Dev Disabil 31, 731742.
45. Cohen, BE, Garg, SK, Ali, S et al. (2008) Red blood cell docosahexaenoic acid and eicosapentaenoic acid concentrations are positively associated with socioeconomic status in patients with established coronary artery disease: data from the Heart and Soul Study. J Nutr 138, 11351140.
46. Schulze, MB, Schulz, M, Heidemann, C et al. (2007) Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med 167, 956965.
47. Dai, S, Fulton, JE, Harrist, RB et al. (2009) Blood lipids in children: age-related patterns and association with body-fat indices: Project HeartBeat! Am J Prev Med 37, 1 Suppl., S56S64.
48. Thomas, C, Nightingale, CM, Donin, AS et al. (2012) Socio-economic position and type 2 diabetes risk factors: patterns in UK children of South Asian, Black African-Caribbean and White European origin. PLoS One 7, e32619.
49. Statistics Denmark (2002) StatBank Denmark: Income, consumption and prices. INDKF7 2011. (accessed April 2013).
50. Statistics Denmark (2012) Indvandrere i Danmark 2012 (Immigrants in Denmark 2012). (accessed September 2013).
51. Pearson, S, Hansen, B, Sørensen, TI et al. (2010) Overweight and obesity trends in Copenhagen schoolchildren from 2002 to 2007. Acta Paediatr 99, 16751678.
52. Pedersen, AN, Fagt, S, Groth, MV et al. (2010) Dietary Habits in Denmark 20032008: Main Results . Copenhagen: National Food Institute, Division of Nutrition (in Danish with an English summary).
53. Morrison, JA, Friedman, LA, Wang, P et al. (2008) Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25 to 30 years later. J Pediatr 152, 201206.
54. Metherel, AH, Armstrong, JM, Patterson, AC et al. (2009) Assessment of blood measures of n-3 polyunsaturated fatty acids with acute fish oil supplementation and washout in men and women. Prostaglandins Leukot Essent Fatty Acids 81, 2329.
55. Westerterp, KR (2009) Assessment of physical activity: a critical appraisal. Eur J Appl Physiol 105, 823828.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed