Skip to main content Accessibility help
×
Home

Meal patterns across ten European countries – results from the European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study

  • E Huseinovic (a1), A Winkvist (a1) (a2), N Slimani (a3), MK Park (a3), H Freisling (a3), H Boeing (a4), G Buckland (a5), L Schwingshackl (a4), E Weiderpass (a6) (a7) (a8) (a9), AL Rostgaard-Hansen (a10), A Tjønneland (a10), A Affret (a11) (a12), MC Boutron-Ruault (a11) (a12), G Fagherazzi (a11) (a12), V Katzke (a13), T Kühn (a13), A Naska (a14) (a15), P Orfanos (a14) (a15), A Trichopoulou (a14) (a15), V Pala (a16), D Palli (a17), F Ricceri (a18) (a19), M Santucci de Magistris (a20), R Tumino (a21), D Engeset (a22), T Enget (a6), G Skeie (a6), A Barricarte (a23) (a24) (a25), CB Bonet (a5), MD Chirlaque (a25) (a26) (a27), P Amiano (a25) (a28), JR Quirós (a29), MJ Sánchez (a25) (a30), JA Dias (a31), I Drake (a31), M Wennberg (a2), JMA Boer (a32), MC Ocké (a32), WMM Verschuren (a32) (a33), C Lassale (a34), A Perez-Cornago (a35), E Riboli (a34), H Ward (a34) and H Bertéus Forslund (a1)...

Abstract

Objective

To characterize meal patterns across ten European countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study.

Design

Cross-sectional study utilizing dietary data collected through a standardized 24 h diet recall during 1995–2000. Eleven predefined intake occasions across a 24 h period were assessed during the interview. In the present descriptive report, meal patterns were analysed in terms of daily number of intake occasions, the proportion reporting each intake occasion and the energy contributions from each intake occasion.

Setting

Twenty-seven centres across ten European countries.

Subjects

Women (64 %) and men (36 %) aged 35–74 years (n 36 020).

Results

Pronounced differences in meal patterns emerged both across centres within the same country and across different countries, with a trend for fewer intake occasions per day in Mediterranean countries compared with central and northern Europe. Differences were also found for daily energy intake provided by lunch, with 38–43 % for women and 41–45 % for men within Mediterranean countries compared with 16–27 % for women and 20–26 % for men in central and northern European countries. Likewise, a south–north gradient was found for daily energy intake from snacks, with 13–20 % (women) and 10–17 % (men) in Mediterranean countries compared with 24–34 % (women) and 23–35 % (men) in central/northern Europe.

Conclusions

We found distinct differences in meal patterns with marked diversity for intake frequency and lunch and snack consumption between Mediterranean and central/northern European countries. Monitoring of meal patterns across various cultures and populations could provide critical context to the research efforts to characterize relationships between dietary intake and health.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Meal patterns across ten European countries – results from the European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Meal patterns across ten European countries – results from the European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Meal patterns across ten European countries – results from the European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Email ena.huseinovic@gu.se

References

Hide All
1. Fabry, P, Hejl, Z, Fodor, J et al. (1964) The frequency of meals. Its relation to overweight, hypercholesterolaemia, and decreased glucose-tolerance. Lancet 2, 614615.
2. Jenkins, DJ, Wolever, TM, Vuksan, V et al. (1989) Nibbling versus gorging: metabolic advantages of increased meal frequency. N Engl J Med 321, 929934.
3. Titan, SM, Bingham, S, Welch, A et al. (2001) Frequency of eating and concentrations of serum cholesterol in the Norfolk population of the European prospective investigation into cancer (EPIC-Norfolk): cross sectional study. BMJ 323, 12861288.
4. Mattes, R (2014) Energy intake and obesity: ingestive frequency outweighs portion size. Physiol Behav 134, 110118.
5. Berteus Forslund, H, Torgerson, JS, Sjostrom, L et al. (2005) Snacking frequency in relation to energy intake and food choices in obese men and women compared to a reference population. Int J Obes (Lond) 29, 711719.
6. Murakami, K & Livingstone, MB (2014) Eating frequency in relation to body mass index and waist circumference in British adults. Int J Obes (Lond) 38, 12001206.
7. Leech, RM, Worsley, A, Timperio, A et al. (2015) Understanding meal patterns: definitions, methodology and impact on nutrient intake and diet quality. Nutr Res Rev 28, 121.
8. Bellisle, F (2004) Impact of the daily meal pattern on energy balance. Scand J Nutr 48, 114118.
9. Berg, C & Bertéus Forslund, H (2015) The influence of portion size and timing of meals on weight balance and obesity. Curr Obes Rep 4, 1118.
10. Oltersdorf, U, Schlettwein-gsell, D & Winkler, G (1999) Assessing eating patterns-an emerging research topic in nutritional sciences: introduction to the symposium. Appetite 32, 17.
11. Wansink, B, Payne, CR & Shimizu, M (2010) ‘Is this a meal or snack?’ Situational cues that drive perceptions. Appetite 54, 214216.
12. Heden, TD, Liu, Y, Sims, LJ et al. (2013) Meal frequency differentially alters postprandial triacylglycerol and insulin concentrations in obese women. Obesity (Silver Spring) 21, 123129.
13. Farshchi, HR, Taylor, MA & Macdonald, IA (2005) Beneficial metabolic effects of regular meal frequency on dietary thermogenesis, insulin sensitivity, and fasting lipid profiles in healthy obese women. Am J Clin Nutr 81, 1624.
14. de Castro, JM (2004) The time of day of food intake influences overall intake in humans. J Nutr 134, 104111.
15. Hutchison, AT & Heilbronn, LK (2016) Metabolic impacts of altering meal frequency and timing – does when we eat matter? Biochimie 124, 187197.
16. Nordic Council of Ministers (2014) Nordic Nutrition Recommendations 2012: Integrating Nutrition and Physical Activity, 5th ed. Nord 2014:002. Copenhagen: Nordic Council of Ministers.
17. Nordic Council of Ministers (2005) Nordic Nutrition Recommendations, NNR 2004: Integrating Nutrition and Physical Activity, 4th ed. Nord 2004:13. Copenhagen: Nordic Council of Ministers.
18. Bellisle, F (2014) Meals and snacking, diet quality and energy balance. Physiol Behav 134, 3843.
19. Slimani, N, Kaaks, R, Ferrari, P et al. (2002) European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study: rationale, design and population characteristics. Public Health Nutr 5, 11251145.
20. Slimani, N, Deharveng, G, Charrondiere, RU et al. (1999) Structure of the standardized computerized 24-h diet recall interview used as reference method in the 22 centers participating in the EPIC project. European Prospective Investigation into Cancer and Nutrition. Comput Methods Programs Biomed 58, 251266.
21. Riboli, E, Hunt, KJ, Slimani, N et al. (2002) European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr 5, 11131124.
22. Kaaks, R, Plummer, M, Riboli, E et al. (1994) Adjustment for bias due to errors in exposure assessments in multicenter cohort studies on diet and cancer: a calibration approach. Am J Clin Nutr 59, 1 Suppl., 245S250S.
23. Ferrari, P, Day, NE, Boshuizen, HC et al. (2008) The evaluation of the diet/disease relation in the EPIC study: considerations for the calibration and the disease models. Int J Epidemiol 37, 368378.
24. Brustad, M, Skeie, G, Braaten, T et al. (2003) Comparison of telephone vs face-to-face interviews in the assessment of dietary intake by the 24 h recall EPIC SOFT program – the Norwegian calibration study. Eur J Clin Nutr 57, 107113.
25. Deharveng, G, Charrondiere, UR, Slimani, N et al. (1999) Comparison of nutrients in the food composition tables available in the nine European countries participating in EPIC. European Prospective Investigation into Cancer and Nutrition. Eur J Clin Nutr 53, 6079.
26. Slimani, N, Deharveng, G, Unwin, I et al. (2007) The EPIC nutrient database project (ENDB): a first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study. Eur J Clin Nutr 61, 10371056.
27. Schofield, WN (1985) Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 39, Suppl. 1, 541.
28. Goldberg, GR, Black, AE, Jebb, SA et al. (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr 45, 569581.
29. Black, AE (2000) Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes Relat Metab Disord 24, 11191130.
30. Ocke, MC, Larranaga, N, Grioni, S et al. (2009) Energy intake and sources of energy intake in the European Prospective Investigation into Cancer and Nutrition. Eur J Clin Nutr 63, Suppl. 4, S3S15.
31. Lund, TB & Gronow, J (2014) Destructuration or continuity? The daily rhythm of eating in Denmark, Finland, Norway and Sweden in 1997 and 2012. Appetite 82, 143153.
32. Lhuissier, A, Tichit, C, Caillavet, F et al. (2013) Who still eats three meals a day? Findings from a quantitative survey in the Paris area. Appetite 63, 5969.
33. Riou, J, Lefevre, T, Parizot, I et al. (2015) Is there still a French eating model? A taxonomy of eating behaviors in adults living in the Paris metropolitan area in 2010. PLoS One 10, e0119161.
34. Pettinger, C, Holdsworth, M & Gerber, M (2006) Meal patterns and cooking practices in Southern France and Central England. Public Health Nutr 9, 10201026.
35. Mestdag, I (2005) Disappearance of the traditional meal: temporal, social and spatial destructuration. Appetite 45, 6274.
36. Schlettwein-gsell, D, Decarli, B & de Groot, L (1999) Meal patterns in the SENECA study of nutrition and the elderly in Europe: assessment method and preliminary results on the role of the midday meal. Appetite 32, 1522.
37. de Groot, LC & van Staveren, WA (1991) Description of survey towns and populations. Euronut SENECA investigators. Eur J Clin Nutr 45, Suppl. 3, 2329.
38. Jakubowicz, D, Barnea, M, Wainstein, J et al. (2013) High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity (Silver Spring) 21, 25042512.
39. Hoffman, R & Gerber, M (2013) Evaluating and adapting the Mediterranean diet for non-Mediterranean populations: a critical appraisal. Nutr Rev 71, 573584.
40. National Institute for Public Health and the Environment (2011) Dutch National Food Consumption Survey 2007–2010. Diet of Children and Adults aged 7 to 69 years. Bilthoven: RIVM.
41. Ovaskainen, ML, Reinivuo, H, Tapanainen, H et al. (2006) Snacks as an element of energy intake and food consumption. Eur J Clin Nutr 60, 494501.
42. Hartmann, C, Siegrist, M & van der Horst, K (2013) Snack frequency: associations with healthy and unhealthy food choices. Public Health Nutr 16, 14871496.
43. Kerver, JM, Yang, EJ, Obayashi, S et al. (2006) Meal and snack patterns are associated with dietary intake of energy and nutrients in US adults. J Am Diet Assoc 106, 4653.
44. Kong, A, Beresford, SA, Alfano, CM et al. (2011) Associations between snacking and weight loss and nutrient intake among postmenopausal overweight to obese women in a dietary weight-loss intervention. J Am Diet Assoc 111, 18981903.
45. Houchins, JA, Tan, SY, Campbell, WW et al. (2013) Effects of fruit and vegetable, consumed in solid vs beverage forms, on acute and chronic appetitive responses in lean and obese adults. Int J Obes (Lond) 37, 11091115.
46. Houchins, JA, Burgess, JR, Campbell, WW et al. (2012) Beverage vs. solid fruits and vegetables: effects on energy intake and body weight. Obesity (Silver Spring) 20, 18441850.
47. Ferrari, P, Slimani, N, Ciampi, A et al. (2002) Evaluation of under- and overreporting of energy intake in the 24-hour diet recalls in the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr 5, 13291345.
48. Freisling, H, van Bakel, MM, Biessy, C et al. (2012) Dietary reporting errors on 24 h recalls and dietary questionnaires are associated with BMI across six European countries as evaluated with recovery biomarkers for protein and potassium intake. Br J Nutr 107, 910920.

Keywords

Type Description Title
WORD
Supplementary materials

Huseinovic supplementary material
Tables S1-S5

 Word (92 KB)
92 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed