Skip to main content Accessibility help
×
Home

Fruit and vegetable intake and bone mass in Chinese adolescents, young and postmenopausal women

  • Jing-Jing Li (a1), Zhen-Wu Huang (a2), Ruo-Qin Wang (a1), Xiao-Ming Ma (a1), Zhe-Qing Zhang (a1), Zen Liu (a1), Yu-Ming Chen (a1) and Yi-Xiang Su (a1)...

Abstract

Objective

Previous studies showed an inconsistent association of fruit and vegetable consumption with bone health. We assessed the associations in Chinese adolescents, young and postmenopausal women.

Design

A cross-sectional study conducted in China during July 2009 to May 2010.

Setting

Bone mineral density (BMD) and content (BMC) at the whole body, lumbar spine and left hip were measured with dual-energy X-ray absorptiometry. Dietary intakes were assessed using an FFQ. All these values were separately standardized into Z-scores in each population subgroup.

Subjects

One hundred and ten boys and 112 girls (11–14 years), 371 young women (20–34 years, postpartum within 2 weeks) and 333 postmenopausal women (50–70 years).

Results

After adjustment for potential covariates, analysis of covariance showed a significantly positive association between fruit intake and BMD and BMC in all participants combined (P-trend: < 0·001 to 0·002). BMD Z-score increased by 0·25 (or 2·1 % of the mean), 0·22 (3·5 %), 0·23 (3·0 %) and 0·25 (3·5 %), and BMC Z-score increased by 0·33 (5·7 %), 0·25 (5·8 %), 0·34 (5·9 %) and 0·29 (4·7 %), at the total body, lumbar spine, total hip and femoral neck in participants belonging to the top tertile compared with the bottom tertile of fruit intake (all P < 0·05), respectively. There was no significant association between vegetable intake and bone mass at all bone sites studied except for total body BMD (P = 0·030). Relatively more pronounced effects were observed in boys and postmenopausal women.

Conclusion

Our findings add to the existing evidence that fruits and vegetables may have a bone sparing effect.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Fruit and vegetable intake and bone mass in Chinese adolescents, young and postmenopausal women
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Fruit and vegetable intake and bone mass in Chinese adolescents, young and postmenopausal women
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Fruit and vegetable intake and bone mass in Chinese adolescents, young and postmenopausal women
      Available formats
      ×

Copyright

Corresponding author

*Corresponding authors: E-mail chenyum@mail.sysu.edu.cn; suyx@mail.sysu.edu.cn

References

Hide All
1.Holroyd, C, Cooper, C & Dennison, E (2008) Epidemiology of osteoporosis. Best Pract Res Clin Endocrinol Metab 22, 671685.
2.Lane, NE (2006) Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 194, 2 Suppl., S3S11.
3.New, SA, Bonjour, JP, New, SAet al. (2003) Nutritional Aspects of Bone Health. Cambridge: The Royal Society of Chemistry.
4.Chen, YM & Ho, SC (2009) Fruit, vegetables, and bone health. In Bioactive Foods in Promoting Health, pp. 173–194 [RR Watson and VR Preedy, editors]. Oxford: Academic Press.
5.New, SA, Bolton-Smith, C, Grubb, DAet al. (1997) Nutritional influences on bone mineral density: a cross-sectional study in premenopausal women. Am J Clin Nutr 65, 18311839.
6.Tucker, KL, Hannan, MT, Chen, Het al. (1999) Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr 69, 727736.
7.Prynne, CJ, Mishra, GD, O'Connell, MAet al. (2006) Fruit and vegetable intakes and bone mineral status: a cross sectional study in 5 age and sex cohorts. Am J Clin Nutr 83, 14201428.
8.Tylavsky, FA, Holliday, K, Danish, Ret al. (2004) Fruit and vegetable intakes are an independent predictor of bone size in early pubertal children. Am J Clin Nutr 79, 311317.
9.Vatanparast, H, Baxter-Jones, A, Faulkner, RAet al. (2005) Positive effects of vegetable and fruit consumption and calcium intake on bone mineral accrual in boys during growth from childhood to adolescence: the University of Saskatchewan Pediatric Bone Mineral Accrual Study. Am J Clin Nutr 82, 700706.
10.Chen, YM, Ho, SC & Woo, JL (2006) Greater fruit and vegetable intake is associated with increased bone mass among postmenopausal Chinese women. Br J Nutr 96, 745751.
11.Kaptoge, S, Welch, A, McTaggart, Aet al. (2003) Effects of dietary nutrients and food groups on bone loss from the proximal femur in men and women in the 7th and 8th decades of age. Osteoporos Int 14, 418428.
12.Hamidi, M, Boucher, BA, Cheung, AMet al. (2011) Fruit and vegetable intake and bone health in women aged 45 years and over: a systematic review. Osteoporos Int 22, 16811693.
13.Rizzoli, R & Bonjour, JP (1999) Determinants of peak bone mass and mechanisms of bone loss. Osteoporos Int 9, Suppl. 2, S17S23.
14.Sowers, M (1996) Pregnancy and lactation as risk factors for subsequent bone loss and osteoporosis. J Bone Miner Res 11, 10521060.
15.Givens, MH & Macy, IC (1933) The chemical composition of the human fetus. J Biol Chem 102, 717.
16.Nilas, L & Christiansen, C (1988) Rates of bone loss in normal women: evidence of accelerated trabecular bone loss after the menopause. Eur J Clin Invest 18, 529534.
17.Leung, SS, Ho, SC, Woo, Jet al. (1997) Hong Kong Adult Dietary Survey. Hong Kong: The Chinese University of Hong Kong.
18.Zhai, F & Yang, X (2006) 2002 National Nutrition and Health Survey in Chinese Residents: Part II. Beijing: People's Medical Publishing House.
19.Djousse, L, Arnett, DK, Coon, Het al. (2004) Fruit and vegetable consumption and LDL cholesterol: the National Heart, Lung, and Blood Institute Family Heart Study. Am J Clin Nutr 79, 213217.
20.Zhang, CX & Ho, SC (2009) Validity and reproducibility of a food frequency questionnaire among Chinese women in Guangdong province. Asia Pac J Clin Nutr 18, 240250.
21.Yang, YX, Wang, GY & Pan, XC (2002) China Food Composition 2002. Beijing: Peking University Medical Press.
22.Howell, DC (1987) Statistical Methods for Psychology, 2nd ed. Boston, MA: Duxbury Press.
23.Leslie, WD, Lix, LM, Tsang, JFet al. (2007) Single-site vs multisite bone density measurement for fracture prediction. Arch Intern Med 167, 16411647.
24.McGartland, CP, Robson, PJ, Murray, LJet al. (2004) Fruit and vegetable consumption and bone mineral density: the Northern Ireland Young Hearts Project. Am J Clin Nutr 80, 10191023.
25.Zalloua, PA, Hsu, YH, Terwedow, Het al. (2007) Impact of seafood and fruit consumption on bone mineral density. Maturitas 56, 111.
26.Barzel, US (1995) The skeleton as an ion exchange system: implications for the role of acid–base imbalance in the genesis of osteoporosis. J Bone Miner Res 10, 14311436.
27.Green, J & Kleeman, CR (1991) The role of bone in the regulation of systemic acid–base balance. Contrib Nephrol 91, 6176.
28.Bushinsky, DA (2001) Acid–base imbalance and the skeleton. Eur J Nutr 40, 238244.
29.Buclin, T, Cosma, M, Appenzeller, Met al. (2001) Diet acids and alkalis influence calcium retention in bone. Osteoporos Int 12, 493499.
30.Tucker, KL, Hannan, MT & Kiel, DP (2001) The acid–base hypothesis: diet and bone in the Framingham Osteoporosis Study. Eur J Nutr 40, 231237.
31.Lemann, J Jr, Pleuss, JA & Gray, RW (1993) Potassium causes calcium retention in healthy adults. J Nutr 123, 16231626.
32.Sebastian, A, Harris, ST, Ottaway, JHet al. (1994) Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med 330, 17761781.
33.Macdonald, HM, New, SA, Golden, MHet al. (2004) Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr 79, 155165.
34.Morton, DJ, Barrett-Connor, EL & Schneider, DL (2001) Vitamin C supplement use and bone mineral density in postmenopausal women. J Bone Miner Res 16, 135140.
35.Hall, SL & Greendale, GA (1998) The relation of dietary vitamin C intake to bone mineral density: results from the PEPI study. Calcif Tissue Int 63, 183189.
36.Binkley, NC & Suttie, JW (1995) Vitamin K nutrition and osteoporosis. J Nutr 125, 18121821.
37.Booth, SL, Broe, KE, Gagnon, DRet al. (2003) Vitamin K intake and bone mineral density in women and men. Am J Clin Nutr 77, 512516.
38.Tobe, H, Muraki, Y, Kitamura, Ket al. (1997) Bone resorption inhibitors from hop extract. Biosci Biotechnol Biochem 61, 158159.
39.Ho, SC, Chen, YM, Woo, JLet al. (2001) Sodium is the leading dietary factor associated with urinary calcium excretion in Hong Kong Chinese adults. Osteoporos Int 12, 723731.
40.Teucher, B, Dainty, JR, Spinks, CAet al. (2008) Sodium and bone health: impact of moderately high and low salt intakes on calcium metabolism in postmenopausal women. J Bone Miner Res 23, 14771485.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed