Skip to main content Accessibility help

Fruit and vegetable consumption is associated with improved mental and cognitive health in older adults from non-Western developing countries

  • Kerstin H Gehlich (a1), Johannes Beller (a2), Bernhard Lange-Asschenfeldt (a1) (a3), Wolfgang Köcher (a4), Martina C Meinke (a1) and Jürgen Lademann (a1)...



Consumption of fruits and vegetables has been shown to contribute to mental and cognitive health in older adults from Western industrialized countries. However, it is unclear whether this effect replicates in older adults from non-Western developing countries. Thus, the present study examined the contribution of fruit and vegetable consumption to mental and cognitive health in older persons from China, India, Mexico, Russia, South Africa and Ghana.


Representative cross-sectional and cross-national study.


We used data from the WHO Study on Global Ageing and Adult Health (SAGE), sampled in 2007 to 2010. Our final sample size included 28 078 participants.


Fruit and vegetable consumption predicted an increased cognitive performance in older adults including improved verbal recall, improved delayed verbal recall, improved digit span test performance and improved verbal fluency; the effect of fruit consumption was much stronger than the effect of vegetable consumption. Regarding mental health, fruit consumption was significantly associated with better subjective quality of life and less depressive symptoms; vegetable consumption, however, did not significantly relate to mental health.


Consumption of fruits is associated with both improved cognitive and mental health in older adults from non-Western developing countries, and consumption of vegetables is associated with improved cognitive health only. Increasing fruit and vegetable consumption might be one easy and cost-effective way to improve the overall health and quality of life of older adults in non-Western developing countries.


Corresponding author

*Corresponding author: Email


Hide All
1. Boeing, H, Bechthold, A, Bub, A et al. (2012) Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr 51, 637663.
2. Dauchet, L, Amouyel, P, Hercberg, S et al. (2006) Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J Nutr 136, 25882593.
3. World Health Organization (1948) Preamble to the Constitution of the World Health Organization as adopted by the International Health Conference, New York, 19–22 June 1946; signed on 22 July 1946 by the representatives of 61 States and entered into force on 7 April 1948. Official Records of the World Health Organization no. 2, p. 100. (accessed September 2018).
4. Glei, DA, Landau, DA, Goldman, N et al. (2005) Participating in social activities helps preserve cognitive function: an analysis of a longitudinal, population-based study of the elderly. Int J Epidemiol 34, 864871.
5. Sun, FW, Stepanovic, MR, Andreano, J et al. (2016) Youthful brains in older adults: preserved neuroanatomy in the default mode and salience networks contributes to youthful memory in superaging. J Neurosci 36, 96599668.
6. Austin, MP, Mitchell, P & Goodwin, GM (2001) Cognitive deficits in depression: possible implications for functional neuropathology. Br J Psychiatry 178, 200206.
7. Khan Shahbaz, A, Vssr, R, Bhat, PS et al. (2014) Structural changes and cognitive deficits in depression and their clinical correlates. Asian J Psychiatr 7, 99100.
8. Blazer, DG, Hybels, CF & Pieper, CF (2001) The association of depression and mortality in elderly persons: a case for multiple, independent pathways. J Gerontol A Biol Sci Med Sci 56, M505M509.
9. Pilania, M, Bairwa, M, Kumar, N et al. (2013) Elderly depression in India: an emerging public health challenge. Australas Med J 6, 107111.
10. Kulkarni, RS & Shinde, RL (2015) Depression and its associated factors in older Indians: a study based on Study of Global Aging and Adult Health (SAGE) – 2007. J Aging Health 27, 622649.
11. Bruce, ML & Leaf, PJ (1989) Psychiatric disorders and 15-month mortality in a community sample of older adults. Am J Public Health 79, 727730.
12. Nooyens, AC, Bueno-de-Mesquita, HB, van Boxtel, MP et al. (2011) Fruit and vegetable intake and cognitive decline in middle-aged men and women: the Doetinchem Cohort Study. Br J Nutr 106, 752761.
13. Kang, JH, Ascherio, A & Grodstein, F (2005) Fruit and vegetable consumption and cognitive decline in aging women. Ann Neurol 57, 713720.
14. Miller, MG, Thangthaeng, N, Poulose, SM et al. (2017) Role of fruits, nuts, and vegetables in maintaining cognitive health. Exp Gerontol 94, 2428.
15. Henrich, J, Heine, SJ & Norenzayan, A (2010) The weirdest people in the world? Behav Brain Sci 33, 6183.
16. Kowal, P, Chatterji, S, Naidoo, N et al. (2012) Data resource profile: the World Health Organization Study on global AGEing and adult health (SAGE). Int J Epidemiol 41, 16391649.
17. Anon. (1995) The World Health Organization Quality of Life assessment (WHOQOL): position paper from the World Health Organization. Soc Sci Med 41, 14031409.
18. Anon, . (1993) Study protocol for the World Health Organization project to develop a Quality of Life assessment instrument (WHOQOL). Qual Life Res 2, 153159.
19. Park, SC, Sakong, J, Koo, BH et al. (2016) Clinical significance of the number of depressive symptoms in major depressive disorder: results from the CRESCEND Study. J Korean Med Sci 31, 617622.
20. Polidori, MC, Pratico, D, Mangialasche, F et al. (2009) High fruit and vegetable intake is positively correlated with antioxidant status and cognitive performance in healthy subjects. J Alzheimers Dis 17, 921927.
21. Lamport, DJ, Saunders, C, Butler, LT et al. (2014) Fruits, vegetables, 100 % juices, and cognitive function. Nutr Rev 72, 774789.
22. Leenders, M, Boshuizen, HC, Ferrari, P et al. (2014) Fruit and vegetable intake and cause-specific mortality in the EPIC study. Eur J Epidemiol 29, 639652.
23. Martinez-Gonzalez, MA & Sanchez-Villegas, A (2016) Food patterns and the prevention of depression. Proc Nutr Soc 75, 139146.
24. Xia, Y, Wang, N, Yu, B et al. (2017) Dietary patterns are associated with depressive symptoms among Chinese adults: a case–control study with propensity score matching. Eur J Nutr 56, 25772587.
25. Chan, R, Chan, D & Woo, J (2014) A prospective cohort study to examine the association between dietary patterns and depressive symptoms in older Chinese people in Hong Kong. PLoS One 9, e105760.
26. Fresan, U, Bes-Rastrollo, M, Segovia-Siapco, G et al. (2018) Does the MIND diet decrease depression risk? A comparison with Mediterranean diet in the SUN cohort. Eur J Nutr. Published online: 7 March 2018. doi: 10.1007/s00394-018-1653-x.
27. Saghafian, F, Malmir, H, Saneei, P et al. (2018) Consumption of fruit and vegetables in relation with psychological disorders in Iranian adults. Eur J Nutr 57, 22952306.
28. Northstone, K, Joinson, C & Emmett, P (2018) Dietary patterns and depressive symptoms in a UK cohort of men and women: a longitudinal study. Public Health Nutr 21, 831837.
29. Lucas, M, Chocano-Bedoya, P, Schulze, MB et al. (2014) Inflammatory dietary pattern and risk of depression among women. Brain Behav Immun 36, 4653.
30. Virmani, A, Pinto, L, Binienda, Z et al. (2013) Food, nutrigenomics, and neurodegeneration – neuroprotection by what you eat! Mol Neurobiol 48, 353362.
31. Lademann, J, Schanzer, S, Meinke, M et al. (2011) Interaction between carotenoids and free radicals in human skin. Skin Pharmacol Physiol 24, 238244.
32. Souza, C, Maia Campos, P et al. (2017) Radical-scavenging activity of a sunscreen enriched by antioxidants providing protection in the whole solar spectral range. Skin Pharmacol Physiol 30, 8189.
33. Wolfle, U, Seelinger, G, Bauer, G et al. (2014) Reactive molecule species and antioxidative mechanisms in normal skin and skin aging. Skin Pharmacol Physiol 27, 316332.
34. Yu, RX, Kocher, W, Darvin, ME et al. (2014) Spectroscopic biofeedback on cutaneous carotenoids as part of a prevention program could be effective to raise health awareness in adolescents. J Biophotonics 7, 926937.
35. Kiecolt-Glaser, JK, Derry, HM & Fagundes, CP (2015) Inflammation: depression fans the flames and feasts on the heat. Am J Psychiatry 172, 10751091.
36. Liu, Y, Ho, RC & Mak, A (2012) Interleukin (IL)-6, tumour necrosis factor α (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J Affect Disord 139, 230239.
37. Hughes, A & Kumari, M (2017) Associations of C-reactive protein and psychological distress are modified by antidepressants, supporting an inflammatory depression subtype: findings from UKHLS. Brain Behav Immun 66, 8993.
38. Howren, MB, Lamkin, DM & Suls, J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 71, 171186.
39. Dowlati, Y, Herrmann, N, Swardfager, W et al. (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67, 446457.
40. Miki, T, Eguchi, M, Kurotani, K et al. (2016) Dietary fiber intake and depressive symptoms in Japanese employees: the Furukawa Nutrition and Health Study. Nutrition 32, 584589.
41. Calvani, R, Picca, A, Lo Monaco, MR et al. (2018) Of microbes and minds: a narrative review on the second brain aging. Front Med (Lausanne) 5, 53.
42. Borre, YE, Panagaki, T, Koelink, PJ et al. (2014) Neuroprotective and cognitive enhancing effects of a multi-targeted food intervention in an animal model of neurodegeneration and depression. Neuropharmacology 79, 738749.
43. Black, CN, Penninx, BW, Bot, M et al. (2016) Oxidative stress, anti-oxidants and the cross-sectional and longitudinal association with depressive symptoms: results from the CARDIA study. Transl Psychiatry 6, e743.
44. Stahl, W & Sies, H (2012) Photoprotection by dietary carotenoids: concept, mechanisms, evidence and future development. Mol Nutr Food Res 56, 287295.
45. Marx, W, Moseley, G, Berk, M et al. (2017) Nutritional psychiatry: the present state of the evidence. Proc Nutr Soc 76, 427436.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed