Skip to main content Accessibility help
×
Home

Fruit and vegetable consumption and risk of the metabolic syndrome: a meta-analysis

  • Yue Tian (a1), Lijun Su (a2), Jiantao Wang (a1), Xiaolin Duan (a1) and Xiubo Jiang (a1)...

Abstract

Objective

Several epidemiological studies have been performed to evaluate the association of fruit and vegetable consumption with risk of the metabolic syndrome (MetS), but the results remain controversial. Thus, we conducted a systematic meta-analysis to assess the associations of fruit or/and vegetable consumption with risk of MetS, separately.

Design

We searched PubMed, EMBASE and Web of Science databases up to July 2017 for relevant available articles. Pooled OR with 95 % CI were calculated with the fixed- or random-effects model.

Results

A total of nine studies for fruit consumption, nine studies for vegetable consumption and seven studies for fruit and vegetable consumption were identified as eligible for the present meta-analysis. The pooled OR (95 % CI) of MetS for the highest v. lowest category were 0·87 (0·82, 0·92; I 2=46·7 %) for fruit consumption, 0·85 (0·80, 0·91; I 2=0·0 %) for vegetable consumption and 0·76 (0·62, 0·93; I 2=83·5 %) for fruit and vegetable consumption. In subgroup analyses stratified by continent where the study was conducted, the inverse association of fruit consumption (0·86 (0·77, 0·96)) and vegetable consumption (0·86 (0·80, 0·92)) with risk of MetS remained significant in Asia. There was no evidence of small-study effect.

Conclusions

Our meta-analysis indicates that fruit or/and vegetable consumption may be inversely associated with risk of MetS. It suggests that people should consume more fruits and vegetables to decrease the risk of MetS.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Fruit and vegetable consumption and risk of the metabolic syndrome: a meta-analysis
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Fruit and vegetable consumption and risk of the metabolic syndrome: a meta-analysis
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Fruit and vegetable consumption and risk of the metabolic syndrome: a meta-analysis
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Email jiangxiubo2005@126.com

References

Hide All
1. Alberti, KG, Eckel, RH, Grundy, SM et al. (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 16401645.
2. Aguilar, M, Bhuket, T, Torres, S et al. (2015) Prevalence of the metabolic syndrome in the United States, 2003–2012. JAMA 313, 19731974.
3. Eckel, RH, Grundy, SM & Zimmet, PZ (2005) The metabolic syndrome. Lancet 365, 14151428.
4. Resnick, HE, Jones, K, Ruotolo, G et al. (2003) Insulin resistance, the metabolic syndrome, and risk of incident cardiovascular disease in nondiabetic American Indians: the Strong Heart Study. Diabetes Care 26, 861867.
5. Isomaa, B, Almgren, P, Tuomi, T et al. (2001) Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24, 683689.
6. Lakka, HM, Laaksonen, DE, Lakka, TA et al. (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288, 27092716.
7. McNeill, AM, Rosamond, WD, Girman, CJ et al. (2005) The metabolic syndrome and 11-year risk of incident cardiovascular disease in the Atherosclerosis Risk in Communities study. Diabetes Care 28, 385390.
8. Trevisan, M, Liu, J, Bahsas, FB et al. (1998) Syndrome X and mortality: a population-based study. Risk Factor and Life Expectancy Research Group. Am J Epidemiol 148, 958966.
9. Povel, CM, Boer, JM, Reiling, E et al. (2011) Genetic variants and the metabolic syndrome: a systematic review. Obes Rev 12, 952967.
10. Gao, M, Ding, D, Huang, J et al. (2013) Association of genetic variants in the adiponectin gene with metabolic syndrome: a case–control study and a systematic meta-analysis in the Chinese population. PLoS One 8, e58412.
11. Sun, K, Ren, M, Liu, D et al. (2014) Alcohol consumption and risk of metabolic syndrome: a meta-analysis of prospective studies. Clin Nutr 33, 596602.
12. Narain, A, Kwok, CS & Mamas, MA (2017) Soft drink intake and the risk of metabolic syndrome: a systematic review and meta-analysis. Int J Clin Pract 71, e12927.
13. Shang, F, Li, X & Jiang, X (2016) Coffee consumption and risk of the metabolic syndrome: a meta-analysis. Diabetes Metab 42, 8087.
14. Yamaoka, K & Tango, T (2012) Effects of lifestyle modification on metabolic syndrome: a systematic review and meta-analysis. BMC Med 10, 138.
15. Cornier, MA, Dabelea, D, Hernandez, TL et al. (2008) The metabolic syndrome. Endocr Rev 29, 777822.
16. Li, F, Liu, X, Wang, W et al. (2015) Consumption of vegetables and fruit and the risk of inflammatory bowel disease: a meta-analysis. Eur J Gastroenterol Hepatol 27, 623630.
17. Vieira, AR, Abar, L, Vingeliene, S et al. (2016) Fruits, vegetables and lung cancer risk: a systematic review and meta-analysis. Ann Oncol 27, 8196.
18. Liu, X, Yan, Y, Li, F et al. (2016) Fruit and vegetable consumption and the risk of depression: a meta-analysis. Nutrition 32, 296302.
19. Li, B, Li, F, Wang, L et al. (2016) Fruit and vegetables consumption and risk of hypertension: a meta-analysis. J Clin Hypertens (Greenwich) 18, 468476.
20. Wu, L, Sun, D & He, Y (2016) Fruit and vegetables consumption and incident hypertension: dose–response meta-analysis of prospective cohort studies. J Hum Hypertens 30, 573580.
21. Wu, Y, Zhang, D, Jiang, X et al. (2015) Fruit and vegetable consumption and risk of type 2 diabetes mellitus: a dose–response meta-analysis of prospective cohort studies. Nutr Metab Cardiovasc Dis 25, 140147.
22. Wang, X, Ouyang, Y, Liu, J et al. (2014) Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose–response meta-analysis of prospective cohort studies. BMJ 349, g4490.
23. Qiao, Q & Group, DS (2006) Comparison of different definitions of the metabolic syndrome in relation to cardiovascular mortality in European men and women. Diabetologia 49, 28372846.
24. Hosseini, B, Saedisomeolia, A & Allman-Farinelli, M (2017) Association between antioxidant intake/status and obesity: a systematic review of observational studies. Biol Trace Elem Res 175, 287297.
25. Park, S, Ham, JO & Lee, BK (2015) Effects of total vitamin A, vitamin C, and fruit intake on risk for metabolic syndrome in Korean women and men. Nutrition 31, 111118.
26. Pan, Y & Pratt, CA (2008) Metabolic syndrome and its association with diet and physical activity in US adolescents. J Am Diet Assoc 108, 276286.
27. Masaki, M (2013) Dietary patterns and risk for metabolic syndrome. J Diabetes 5, 195.
28. Kwasniewska, M, Kaleta, D, Dziankowska-Zaborszczyk, E et al. (2009) Healthy behaviours, lifestyle patterns and sociodemographic determinants of the metabolic syndrome. Cent Eur J Public Health 17, 1419.
29. Kelishadi, R, Gouya, MM, Adeli, K et al. (2008) Factors associated with the metabolic syndrome in a national sample of youths: CASPIAN Study. Nutr Metab Cardiovasc Dis 18, 461470.
30. Esmaillzadeh, A, Kimiagar, M, Mehrabi, Y et al. (2006) Fruit and vegetable intakes, C-reactive protein, and the metabolic syndrome. Am J Clin Nutr 84, 14891497.
31. de Oliveira, EP, McLellan, KC, Vaz de Arruda Silveira, L et al. (2012) Dietary factors associated with metabolic syndrome in Brazilian adults. Nutr J 11, 13.
32. Boucher, JL, Sidebottom, AC, Sillah, A et al. (2013) Short-term changes in lifestyle risk factors and incident metabolic syndrome in the Heart of New Ulm Project. Circulation 128, A13983.
33. Shin, A, Lim, SY, Sung, J et al. (2009) Dietary intake, eating habits, and metabolic syndrome in Korean men. J Am Diet Assoc 109, 633640.
34. Lutsey, PL, Steffen, LM & Stevens, J (2008) Dietary intake and the development of the metabolic syndrome: the Atherosclerosis Risk in Communities study. Circulation 117, 754761.
35. Kouki, R, Schwab, U, Hassinen, M et al. (2011) Food consumption, nutrient intake and the risk of having metabolic syndrome: the DR’s EXTRA Study. Eur J Clin Nutr 65, 368377.
36. Fletcher, EA, McNaughton, SA, Lacy, KE et al. (2016) Mediating effects of dietary intake on associations of TV viewing, body mass index and metabolic syndrome in adolescents. Obes Sci Pract 2, 232240.
37. Baik, I, Lee, M, Jun, NR et al. (2013) A healthy dietary pattern consisting of a variety of food choices is inversely associated with the development of metabolic syndrome. Nutr Res Pract 7, 233241.
38. Moher, D, Liberati, A, Tetzlaff, J et al. (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8, 336341.
39. Higgins, JP & Thompson, SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21, 15391558.
40. Higgins, JP, Thompson, SG, Deeks, JJ et al. (2003) Measuring inconsistency in meta-analyses. BMJ 327, 557560.
41. Higgins, JP & Thompson, SG (2004) Controlling the risk of spurious findings from meta-regression. Stat Med 23, 16631682.
42. Tobias, A (1999) Assessing the influence of a single study in the meta-analysis estimate. Stata Tech Bull 8, 75267529.
43. Egger, M, Davey Smith, G, Schneider, M et al. (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629634.
44. Jung, HJ, Han, SN, Song, S et al. (2011) Association between adherence to the Korean Food Guidance System and the risk of metabolic abnormalities in Koreans. Nutr Res Pract 5, 560568.
45. Jaaskelainen, P, Magnussen, CG, Pahkala, K et al. (2012) Childhood nutrition in predicting metabolic syndrome in adults: the Cardiovascular Risk in Young Finns Study. Diabetes Care 35, 19371943.
46. Ando, K & Fujita, T (2009) Metabolic syndrome and oxidative stress. Free Radic Biol Med 47, 213218.
47. Bokov, A, Chaudhuri, A & Richardson, A (2004) The role of oxidative damage and stress in aging. Mech Ageing Dev 125, 811826.
48. Grundy, SM (2007) Metabolic syndrome: a multiplex cardiovascular risk factor. J Clin Endocrinol Metab 92, 399404.
49. Palmieri, VO, Grattagliano, I, Portincasa, P et al. (2006) Systemic oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome. J Nutr 136, 30223026.
50. Jayaprakasam, B, Vareed, SK, Olson, LK et al. (2005) Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J Agric Food Chem 53, 2831.
51. Brighenti, F, Valtueña, S, Pellegrini, N et al. (2007) Total antioxidant capacity of the diet is inversely and independently related to plasma concentration of high-sensitivity C-reactive protein in adult Italian subjects. Br J Nutr 93, 619625.
52. Wannamethee, SG, Lowe, GD, Rumley, A et al. (2006) Associations of vitamin C status, fruit and vegetable intakes, and markers of inflammation and hemostasis. Am J Clin Nutr 83, 567574.
53. Watzl, B, Kulling, SE, Moseneder, J et al. (2005) A 4-wk intervention with high intake of carotenoid-rich vegetables and fruit reduces plasma C-reactive protein in healthy, nonsmoking men. Am J Clin Nutr 82, 10521058.
54. Singh, RB, Niaz, MA & Ghosh, S (1994) Effect on central obesity and associated disturbances of low-energy, fruit- and vegetable-enriched prudent diet in north Indians. Postgrad Med J 70, 895900.
55. Munafo, MR & Flint, J (2004) Meta-analysis of genetic association studies. Trends Genet 20, 439444.

Keywords

Type Description Title
WORD
Supplementary materials

Tian et al supplementary material
Tian et al supplementary material 1

 Word (17 KB)
17 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed