Skip to main content Accessibility help
×
Home

Frequency of soy food consumption and serum isoflavone concentrations among Chinese women in Shanghai

  • Cara L Frankenfeld (a1) (a2), Johanna W Lampe (a1) (a2), Jackilen Shannon (a3), Dao L Gao (a4), Roberta M Ray (a1), Joann Prunty (a1), Thomas F Kalhorn (a5), Kristiina Wähälä (a6), Ruth E Patterson (a1) (a2) and David B Thomas (a1) (a2)...

Abstract

Objective:

The food-frequency questionnaire (FFQ) can be an efficient tool to evaluate dietary intake in large, population-based studies, especially for specific foods. The objective of this study was to validate the assessment of soy and isoflavone (daidzein and genistein) intakes, measured by an FFQ, by comparing intakes with serum isoflavone concentrations.

Design and setting:

Soy and isoflavone intakes and serum isoflavone concentrations were determined as part of a case–control study of dietary factors and risks of benign breast disease and breast cancer. The FFQ, administered during an in-person interview, included six soy-specific line items. Blood was drawn within one week of FFQ completion.

Subjects:

In total, 1823 women living in Shanghai, People's Republic of China.

Results:

In this population, soybean milk, fresh bean curd and other bean foods were eaten once per week, and fermented bean curd, fried bean curd puff and soybeans were eaten less than once per week. A significant linear trend (P > 0.01) in serum isoflavone concentrations across increasing categories of soy and isoflavone intakes was observed, indicating that soy and isoflavone intakes, measured by the FFQ, well distinguished serum isoflavone concentrations. Linear trends were also observed in both case and control groups in stratified analyses, suggesting little differential bias by case–control status.

Conclusions:

The results suggest that the FFQ provides a useful marker of soy food consumption and isoflavone exposure in this population.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Frequency of soy food consumption and serum isoflavone concentrations among Chinese women in Shanghai
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Frequency of soy food consumption and serum isoflavone concentrations among Chinese women in Shanghai
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Frequency of soy food consumption and serum isoflavone concentrations among Chinese women in Shanghai
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email jlampe@fhcrc.org

References

Hide All
1Adlercreutz, H, Mazur, W. Phyto-oestrogens and Western diseases. Annals of Medicine 1997; 29: 95120.
2Hopert, A-C, Beyer, A, Frank, K, Strunck, E, Wunsche, W, Vollmer, G. Characterization of estrogenicity of phytoestrogens in an endometrial-derived experimental model. Environmental Health Perspectives 1998; 106: 581–6.
3Breinholt, V, Hossaini, A, Svendsen, GW, Brouwer, C, Nielson, SE. Estrogenic activity of flavonoids in mice. The importance of estrogen receptor distribution, metabolism and bioavailability. Food and Chemical Toxicology 2000; 38: 555–64.
4Setchell, KDR. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. American Journal of Clinical Nutrition 1998; 68(Suppl.): 1333S–46S.
5Guthrie, JR, Ball, M, Murkies, A, Dennerstein, L. Dietary phytoestrogen intake in mid-life Australian-born women: relationship to health variables. Climacteric 2000; 3: 254–61.
6Keinan-Boker, L, Peeters, PHM, Mulligan, AA, Navarro, C, Slimani, N, Mattison, I, et al. Soy product consumption in 10 European countries: the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutrition 2002; 5: 1217–26.
7Dai, Q, Shu, XO, Jin, F, Potter, JD, Kushi, LH, Teas, J, et al. Population-based case-control study of soyfood intake and breast cancer risk in Shanghai. British Journal of Cancer 2001; 85: 372–8.
8Chen, Z, Zheng, W, Custer, LJ, Dai, Q, Shu, XO, Jin, F, et al. Usual dietary consumption of soy foods and its correlation with the excretion rate of isoflavonoids in overnight urine samples among Chinese women in Shanghai. Nutrition and Cancer 1999; 33: 82–7.
9Ho, SC, Woo, JL, Leung, SS, Sham, AL, Lam, TH, Janus, ED. Intake of soy products is associated with better plasma lipid profiles in the Hong Kong Chinese population. Journal of Nutrition 2000; 130: 2590–3.
10Willett, W. Nutritional Epidemiology. New York: Oxford University Press, 1990.
11Thomas, DB, Gao, DL, Ray, RM, Wang, WW, Allison, CJ, Chen, FJ, et al. Randomized trial of breast self-examination in Shanghai: final results. Journal of the National Cancer Institute 2002; 94: 1445–57.
12 Carolina Population Center, University of North Carolina at Chapel Hill. The China Health and Nutrition Survey [online], 1999. Available at http://www.cpc.unc.edu/projects/china/china_home.html
13US Department of Agriculture – Iowa State University Database on the Isoflavone Content of Foods, Release 1.3 – 2002 [online], 2002. Available at http://www.nal.usda.gov/fnic/foodcomp/Data/isoflav/isoflav.html
14Franke, AA, Hankin, JH, Yu, MC, Maskarinec, G, Low, SH, Custer, LJ. Isoflavone levels in soy foods consumed by multiethnic populations in Singapore and Hawaii. Journal of Agricutural and Food Chemistry 1999; 47: 977–86.
15Gamache, PH, Acworth, IN. Analysis of phytoestrogens and polyphenols in plasma, tissue, and urine using HPLC with coulometric array detection. Proceedings of the Society for Experimental Biology and Medicine 1998; 217: 274–80.
16Lundh, T, Pettersson, H, Kiessling, K. Liquid chromatographic determination of the estrogens, daidzein, formononetin, coumestrol, and equol in bovine plasma and urine. Journal of the Association of Official Analytical Chemists 1988; 71: 938–41.
17Coward, L, Kirk, M, Albin, N, Barnes, S. Analysis of plasma isoflavones by reversed-phase HPLC–multiple reaction ion monitoring-mass spectrometry. Clinica Chimica Acta 1996; 247: 121–42.
18Yearly climate info – Shanghai Municipality. Travel China Guide [online], 2003. Available at http://www.travelchinaguide.com/climate/shanghai.htm
19Yamamoto, S, Sobue, T, Sasaki, S, Kobayahi, M, Arai, Y, Uehara, M, et al. Validity and reproducibility of a self-administered food-frequency questionnaire to assess isoflavone intake in a Japanese population in comparison with dietary records and blood and urine isoflavones. Journal of Nutrition 2001; 131: 2741–7.
20Arai, Y, Uehara, M, Sato, Y, Kimira, M, Eboshida, A, Adlercreutz, H, et al. Comparison of isoflavones among dietary intake, plasma concentration and urinary excretion for accurate estimation of phytoestrogen intake. Journal of Epidemiology 2000; 10: 127–35.
21Maskarinec, G, Singh, S, Meng, L, Franke, AA. Dietary soy intake and urinary isoflavone excretion among women from a multiethnic population. Cancer Epidemiology, Biomarkers & Prevention 1998; 7: 613–9.
22Huang, MH, Harrison, GG, Mohamed, MM, Gornbein, JA, Henning, SM, Go, VL, et al. Assessing the accuracy of a food frequency questionnaire for estimating usual intake of phytoestrogen. Nutrition and Cancer 2000; 37: 145–54.
23Willett, WC. Nutritional Epidemiology, 2nd ed. New York: Oxford University Press, 1998.
24Nagata, C, Shimizu, H, Takami, R, Hayashi, M, Takeda, N, Yasuda, K. Soy product intake and serum isoflavonoid and estradiol concentrations in relation to bone mineral density in postmenopausal Japanese women. Osteoporosis International 2002; 13: 200–4.
25Morton, MS, Arisaka, O, Miyake, N, Morgan, LD, Evans, BA. Phytoestrogen concentrations in serum from Japanese men and women over forty years of age. Journal of Nutrition 2002; 132: 3168–71.
26Frankenfeld, CL, Patterson, RE, Kalhorn, TF, Skor, HE, Howald, WN, Lampe, JW. Validation of a soy food frequency questionnaire with plasma concentrations of isoflavones in US adults. Journal of the American Dietetic Association 2002; 102: 1407–13.
27Frankenfeld, CL, Patterson, RE, Horner, NK, Neuhouser, ML, Skor, HE, Kalhorn, TF, et al. Validation of a soy food-frequency questionnaire and evaluation of correlates of plasma isoflavone concentrations in postmenopausal women. American Journal of Clinical Nutrition 2003; 77: 674–80.
28De Kleijn, MJ, van der Schouw, YT, Wilson, PW, Adlercreutz, H, Mazur, W, Grobbee, DE, et al. Intake of dietary phytoestrogens is low in postmenopausal women in the United States: The Framingham Study. Journal of Nutrition 2001; 131: 1826–32.
29Jakes, RW, Duffy, SW, Ng, FC, Gao, F, Ng, EH. Mammographic parenchymal patterns and self-reported soy intake in Singapore Chinese women. Cancer Epidemiology, Biomarkers & Prevention 2002; 11: 608–13.
30Sun, CL, Yuan, JM, Arakawa, K, Low, SH, Lee, HP, Yu, MC. Dietary soy and increased risk of bladder cancer: the Singapore Chinese Health Study. Cancer Epidemiology, Biomarkers & Prevention 2002; 11: 1674–7.
31Setchell, KDR, Faughnan, MS, Avades, T, Zimmer-Nechemias, L, Brown, NM, Wolfe, BE, et al. Comparing the pharmokinetics of daidzein and genistein with the use of 13C-labeled tracers in premenopausal women. American Journal of Clinical Nutrition 2003; 77: 411–9.
32Watanabe, S, Yamaguchi, M, Sobue, T, Takahashi, T, Miura, T, Arai, Y, et al. Pharmacokinetics of soybean isoflavones in plasma, urine and feces of men after ingestion of 60 g baked soybean powder (kinako). Journal of Nutrition 1998; 128: 1710–5.
33King, RA, Bursill, DB. Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. American Journal of Clinical Nutrition 1998; 67: 867–72.
34Lampe, JW. Isoflavonoid and lignan phytoestrogens as dietary biomarkers. Journal of Nutrition 2003; 133(Suppl. 3): 956S–64S.

Keywords

Frequency of soy food consumption and serum isoflavone concentrations among Chinese women in Shanghai

  • Cara L Frankenfeld (a1) (a2), Johanna W Lampe (a1) (a2), Jackilen Shannon (a3), Dao L Gao (a4), Roberta M Ray (a1), Joann Prunty (a1), Thomas F Kalhorn (a5), Kristiina Wähälä (a6), Ruth E Patterson (a1) (a2) and David B Thomas (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed