Skip to main content Accessibility help
×
Home

Estimation of caffeine intake in Japanese adults using 16 d weighed diet records based on a food composition database newly developed for Japanese populations

  • Mai Yamada (a1), Satoshi Sasaki (a2), Kentaro Murakami (a2), Yoshiko Takahashi (a3), Hitomi Okubo (a2), Naoko Hirota (a4), Akiko Notsu (a5), Hidemi Todoriki (a6), Ayako Miura (a7), Mitsuru Fukui (a8) and Chigusa Date (a9)...

Abstract

Objective

Previous studies in Western populations have linked caffeine intake with health status. While detailed dietary assessment studies in these populations have shown that the main contributors to caffeine intake are coffee and tea, the wide consumption of Japanese and Chinese teas in Japan suggests that sources of intake in Japan may differ from those in Western populations. Among these teas, moreover, caffeine content varies widely among the different forms consumed (brewed, canned or bottled), suggesting the need for detailed dietary assessment in estimating intake in Japanese populations. Here, because a caffeine composition database or data obtained from detailed dietary assessment have not been available, we developed a database for caffeine content in Japanese foods and beverages, and then used it to estimate intake in a Japanese population.

Design

The caffeine food composition database was developed using analytic values from the literature, 16 d weighed diet records were collected, and caffeine intake was estimated from the 16 d weighed diet records.

Setting

Four areas in Japan, Osaka (Osaka City), Okinawa (Ginowan City), Nagano (Matsumoto City) and Tottori (Kurayoshi City), between November 2002 and September 2003.

Subjects

Two hundred and thirty Japanese adults aged 30–69 years.

Results

Mean caffeine intake was 256·2 mg/d for women and 268·3 mg/d for men. The major contributors to intake were Japanese and Chinese teas and coffee (47 % each). Caffeine intake above 400 mg/d, suggested in reviews to possibly have negative health effects, was seen in 11 % of women and 15 % of men.

Conclusions

In this Japanese population, caffeine intake was comparable to the estimated values reported in Western populations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Estimation of caffeine intake in Japanese adults using 16 d weighed diet records based on a food composition database newly developed for Japanese populations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Estimation of caffeine intake in Japanese adults using 16 d weighed diet records based on a food composition database newly developed for Japanese populations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Estimation of caffeine intake in Japanese adults using 16 d weighed diet records based on a food composition database newly developed for Japanese populations
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email stssasak@m.u-tokyo.ac.jp

References

Hide All
1. Barone, JJ & Roberts, HR (1996) Caffeine consumption. Food Chem Toxicol 34, 119129.
2. Graham, DM (1978) Caffeine – its identity, dietary sources, intake and biological effects. Nutr Rev 36, 97102.
3. McCusker, RR, Goldberger, BA & Cone, EJ (2006) Caffeine content of energy drinks, carbonated sodas, and other beverages. J Anal Toxicol 30, 112114.
4. Carrillo, JA & Benitez, J (2000) Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin Pharmacokinet 39, 127153.
5. Nawrot, P, Jordan, S, Eastwood, J et al. (2003) Effects of caffeine on human health. Food Addit Contam 20, 130.
6. Higdon, JV & Frei, B (2006) Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr 46, 101123.
7. Cornelis, MC & El-Sohemy, A (2007) Coffee, caffeine, and coronary heart disease. Curr Opin Clin Nutr Metab Care 10, 745751.
8. Lopez-Garcia, E, van Dam, RM, Rajpathak, S et al. (2006) Changes in caffeine intake and long-term weight change in men and women. Am J Clin Nutr 83, 674680.
9.The EU Scientific Committee for Food (1999) Opinion on Caffeine, Taurine and d-Glucurono-γ-Lactone as constituents of so-called ‘energy’ drinks (expressed on 21 January 1999). http://ec.europa.eu/food/fs/sc/scf/out22_en.html (accessed December 2008).
10.Health Canada (2003) Caffeine and your health. http://www.hc-sc.gc.ca/fn-an/securit/facts-faits/caffeine-eng.php (accessed December 2008).
11.Food Standards Agency (2008) Food Standards Agency publishes new caffeine advice for pregnant women. http://www.food.gov.uk/news/pressreleases/2008/nov/caffeineadvice (accessed December 2008).
12. Derbyshire, E & Abdula, S (2008) Habitual caffeine intake in women of reproductive age. J Hum Nutr Diet 21, 159164.
13. Cotton, PA, Subar, AF, Friday, JE et al. (2004) Dietary sources of nutrients among US adults, 1994 to 1996. J Am Diet Assoc 104, 921930.
14. Frary, CD, Johnson, RK & Wang, MQ (2005) Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc 105, 110113.
15.The Environment and Food Agency of Iceland (2004) Caffeine consumption in Iceland in 2002. http://english.ust.is/media/ljosmyndir/matvaeli/caffeine_consumption.pdf (accessed December 2008).
16. Science and Technology Agency (2005) Standard Tables of Food Composition in Japan, 5th ed. Tokyo: Printing Bureau of the Ministry of Finance (in Japanese).
17. Japan Soft Drink Association (2008) Data of Soft Drink-related Statistics. Tokyo: Japan Soft Drink Association (in Japanese).
18. Kizu, J, Kimoto, K, Arakawa, Y et al. (1998) Caffeine content of canned beverages and sustained high plasma concentration of caffeine after intake. Chromatography 19, 217224 (in Japanese).
19. Maekawa, H, Yamazaki, Y & Yagasaki, K (1993) Extraction of theobromine and caffeine in the cocoa powder by DMSO (Report I). Rep Central Customs Lab 32, 9396 (in Japanese).
20. Terada, H, Suzuki, A, Tanaka, H et al. (1992) Determination of catechins and methyxanthines in foodstuffs by semi-micro high performance liquid chromatography. J Food Hyg Soc Jpn (Shokuhin Eiseigaku Zasshi) 33, 347354 (in Japanese).
21. Oyagi, M (1988) Analysis of tea: measurement methods for caffeine contents in tea by high performance liquid chromatography. Den-en chofu Univ J 21, 216243 (in Japanese).
22. Ueki, T, Honda, H & Sakurai, S (1986) Analysis of Chlorogenic Acids and Caffeine in Coffee-containing Beverages by High Performance Liquid Chromatography: Reports of Surveys and Research. Saitama: Food and Agricultural Materials Inspection Center; available at http://www.famic.go.jp/technical_information/investigation_research_report/pdf/1003.pdf
23. Goto, T, Nagashima, H, Yoshida, Y et al. (1996) Contents of individual tea catechins and caffeine in Japanese green tea. Tea Res J 83, 2128 (in Japanese).
24. Goto, T, Horie, H, Ozeki, Y et al. (1994) Chemical composition of Japanese green teas on market. Tea Res J 80, 2328 (in Japanese).
25. Ikegaya, K (1985) Determination of caffeine in tea by high performance liquid chromatography. Nippon Shokuhin Kogyo Gakkaishi 32, 6166 (in Japanese).
26. Kishi, H (2008) Measurements of contents of caffeine and theobromine in chocolate products and chewing gums. Bull Kanagawa Prefectural Inst Public Health 38, 2325 (in Japanese).
27. Kishi, H, Tsuchiya, H & Hirayama, K (2005) Determination of catachins, caffeine, and theanine in Chinese tea bought by internet. Bull Kanagawa Prefectural Inst Public Health 35, 3032 (in Japanese).
28. Kunugi, A, Aoki, T & Kunigi, S (1988) Determination of caffeine in coffee, black tea and green tea by high performance liquid chromatography. J Food Hyg Soc Jpn (Shokuhin Eiseigaku Zasshi) 29, 136140 (in Japanese).
29. Moriyasu, T, Saito, K, Nakazato, M et al. (1996) Survey of caffeine, theobromine and theophylline in foods. J Food Hyg Soc Jpn (Shokuhin Eiseigaku Zasshi) 37, 5963 (in Japanese).
30. Fukuhara, K, Matsuki, Y & Nanbara, T (1985) Simultaneous determination of theobromine, theophylline, and caffeine in foods by high performance liquid chromatography. J Food Hyg Soc Jpn (Shokuhin Eiseigaku Zasshi) 26, 208212 (in Japanese).
31. Shimizu, H & Watanabe, Y (1992) Determination of caffeine in tea leaf infusion by high performance liquid chromatography. Gifu City Women’s Coll J 42, 3338 (in Japanese).
32. Hino, C, Miura, T, Umeda, H et al. (2005) Differentiation of tea categories by the composition of tea polyphenols and caffeine. Rep Central Customs Lab 24, 2332 (in Japanese).
33. Kuwano, K & Mitamura, T (1986) HPLC determination of caffeine in marketed green tea. Nippon Nogeikagaku Kaishi 60, 115117 (in Japanese).
34. Nishizawa, M, Chonan, T, Sekijo, I et al. (1982) Quantitative determination of caffeine, theobromine and theophylline in tea, coffee and cocoa by high performance liquid chromatography. Bull Hokkaido Prefectural Inst Public Health 32, 711 (in Japanese).
35. Chonan, T, Nishizawa, M & Sekijo, I (1983) Caffeine, theobromine and theophylline contents of confectioneries and beverages. Bull Hokkaido Prefectural Inst Public Health 33, 8486 (in Japanese).
36. Terada, S, Maeda, Y, Masui, T et al. (1987) Comparison of caffeine and catechin components in infusion of various tea (green, oolong and black tea) and tea drinks. Nippon Shokuhin Kogyo Gakkaishi 34, 2027 (in Japanese).
37. Terada, H & Sakabe, Y (1984) High-performance liquid chromatographic determination of theobromine, theophylline and caffeine in food products. J Chromatogr 291, 453459 (in Japanese).
38. Konno, S, Kanbara, Y & Bunbayashi, R (2000) Caffeine analysis of tea. Kinran Coll Res J 31, 131134 (in Japanese).
39. Sumitani, H, Suekane, S, Nakatani, A et al. (1994) Quantitative determination of caffeine in commercially canned black tea drink with milk. Res Rep Toyo Food Lab 20, 149154 (in Japanese).
40. Gilbert, RM (1984) The Methylxanthine Beverages and Foods: Chemistry, Consumption, and Health Effects, pp. 185213. New York: Alan R. Liss, Inc.
41. Murakami, K, Sasaki, S, Takahashi, Y et al. (2008) Reproducibility and relative validity of dietary glycaemic index and load assessed with a self-administered diet-history questionnaire in Japanese adults. Br J Nutr 99, 639643.
42. Black, AE, Coward, WA, Cole, TJ et al. (1996) Human energy expenditure in affluent societies: an analysis of 574 doubly-labelled water measurements. Eur J Clin Nutr 50, 7292.
43. Trabulsi, J & Schoeller, DA (2001) Evaluation of dietary assessment instruments against doubly labeled water, a biomarker of habitual energy intake. Am J Physiol Endocrinol Metab 281, E891E899.

Keywords

Estimation of caffeine intake in Japanese adults using 16 d weighed diet records based on a food composition database newly developed for Japanese populations

  • Mai Yamada (a1), Satoshi Sasaki (a2), Kentaro Murakami (a2), Yoshiko Takahashi (a3), Hitomi Okubo (a2), Naoko Hirota (a4), Akiko Notsu (a5), Hidemi Todoriki (a6), Ayako Miura (a7), Mitsuru Fukui (a8) and Chigusa Date (a9)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed