Skip to main content Accessibility help
×
Home

Effect of different dosage and administration schedules of folic acid on blood folate levels in a population of Honduran women of reproductive age

  • J Rosenthal (a1), G Milla (a2), A Flores (a1), M Yon (a2), C Pfeiffer (a1), E Umaña (a2), N Skerrette (a1), F Barahona (a3) and The Cooperative Folic Acid Research Group†...

Abstract

Background

Observational studies and clinical trials have shown conclusive evidence that periconceptional folic acid supplementation prevents up to 70 % of neural tube defects (NTD). The Honduran government wanted to implement a supplementation programme of folic acid but needed to assess the relative effects of two dosages of folic acid.

Objective

To determine the effect of two dosages of folic acid on blood folate levels in Honduran female factory workers aged 18 to 49 years.

Design

This was a randomized, double-blind control supplementation trial conducted in Choloma, Honduras. A total of 140 eligible women were randomly assigned to two dosage groups and followed up for 12 weeks. One group received a daily dosage of 1 mg folic acid and the other a once weekly dosage of 5 mg. Serum folate and red blood cell folate levels were determined by radioassay at baseline, 6 weeks and 12 weeks.

Results

Serum folate levels increased from 6·3 (se 0·2) to 14·9 (se 0·6) ng/ml (P < 0·0001) in women assigned to the 1 mg/d group and from 6·9 (se 0·3) to 10·1 (se 0·4) ng/ml (P < 0·0001) in those assigned to the 5 mg/week group. Red blood cell folate concentrations also increased significantly in both groups, albeit more slowly. Educational level, age and BMI were not associated with the changes in serum and red blood cell folate levels during the supplementation period. However, a differential effect on serum folate levels by dosage group and time was observed.

Conclusions

Although both folate supplementation regimens increased serum and red blood cell folate levels significantly among the women studied, blood folate levels that are considered to be protective of NTD were reached faster with the daily dosage of 1 mg folic acid.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of different dosage and administration schedules of folic acid on blood folate levels in a population of Honduran women of reproductive age
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of different dosage and administration schedules of folic acid on blood folate levels in a population of Honduran women of reproductive age
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of different dosage and administration schedules of folic acid on blood folate levels in a population of Honduran women of reproductive age
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email jyr4@cdc.gov

References

Hide All
1.Petrini, J, Damus, K & Johnston, RB (1997) An overview of infant mortality and birth defects in the United States. Teratology 56, 810.
2.Kalien, B, Robert, E & Harris, J (1998) Associated malformations in infants and fetuses with upper or lower neural tube defects. Teratology 57, 5663.
3.Lee, K, Khoshnood, B, Chen, L, Wall, SN, Cromie, WJ & Mittendorf, RL (2001) Infant mortality from congenital malformations in the United States, 1970–1997. Obstet Gynecol 98, 620627.
4.Botto, L, Moore, CA, Khoury, MJ & Erickson, JD (2005) Neural tube defects. N Engl J Med 341, 15091519.
5.Chen, LT & Rivera, MA (2004) The Costa Rican experience: reduction of neural tube defects following food fortification programs. Nutr Rev 62, S40S43.
6.Institute of Nutrition of Central America and Panama (2005) I Taller Centroamericano de la Prevencion de Defectos del Nacimiento. Costa Rica: INCAP.
7.Milla, G, Umaña, E & Mayes, I (2002) Reporte de la Prevalencia Hospitalaria de Malformaciones Congenitas en Honduras. Honduras: Proyecto de Niños Saludables.
8. Lopez-Romero GG & Mayes I (2004) Incidencia de anomalies congenitas y sus factores de riesgo diagnosticadas en el Instituto Hondureño de Seguridad Social durante el periodo Julio 2002 a Septiembre 2004. Presented at X Congreso de Postgraduados de Medicina UNAH-MSP-IHSS, Tegucigalpa, Honduras, 18–20 November 2004.
9.MRC Vitamin Study Research Group (1992) Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRC Vitamin Study Research Group. Lancet 338, 131137.
10.Czeizel, AE & Dudas, I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327, 18321835.
11.Shaw, GM, Schaffer, D, Velie, EM, Morland, K & Harris, JA (1995) Periconceptional vitamin use, dietary folate, and the occurrence of neural tube defects. Epidemiology 6, 219226.
12.Berry, RJ, Li, Z, Erickson, JD et al. (1999) Prevention of neural-tube defects with folic acid in China. China–US Collaborative Project for Neural Tube Defect Prevention. N Engl J Med 341, 14851490.
13.Daly, LE, Kirke, PN, Molloy, A, Weir, DG & Scott, JM (1995) Folate levels and neural tube defects. Implications for prevention. JAMA 274, 16981702.
14.Wald, N & Hackshaw, A (1997) Folic acid and prevention of neural-tube defects. Lancet 350, 665.
15.Wald, NJ, Law, MR, Morris, JK & Wald, DS (2001) Quantifying the effect of folic acid. Lancet 358, 20692073.
16. Comision de Ministros de Economia de Centroamérica (2002) Reglamento Tecnico de la Union Aduanera Centroamericana. XXIV; R-UAC 67.01.15:12.
17.Milla, GR, Flores, AL, Umaña, E, Mayes, I & Rosenthal, J (2007) Knowledge, attitudes and practices of Honduran post-pregnancy women. Rev Panam Salud Publica 22, 340347.
18. Instituto de Estadistica de Honduras (2001) Censo de Poblacion de Gobernacion y Justicia del año 2001. http://ccp.ucr.ac.cr/bup/honduras (accessed May 2006).
19.SAS Institute, Inc. (1999) SAS/STAT User Guide, Version 8. Cary, NC: SAS Institute, Inc.
20. Centers for Disease Control and Prevention (not dated) Folate/Vitamin B12 in Serum and Whole Blood – NHANES 2001–2002. Laboratory Procedure Manual. http://www.cdc.gov/nchs/data/nhanes/nhanes_01_02/l06_b_met_folate_B12.pdf (accessed January 2005).
21.Khattree, R & Naik, DN (1999) Applied Multivariate Statistics with SAS Software, 2nd ed. Cary, NC: SAS Institute, Inc.
22.Norsworthy, B, Skeaff, CM, Adank, C & Green, TJ (2004) Effects of once-a-week or daily folic acid supplementation on red blood cell folate concentrations in women. Eur J Clin Nutr 58, 548554.
23.Martinez-de Villarreal, L, Limon-Benavides, C, Valdez-Leal, R, Sanchez-Pena, MA & Villarreal, JZ (2001) Impact of weekly administration of folic acid on folic acid blood levels. Salud Publica Mex 43, 103107.
24.Holden, KR, Collins, JS, Greene, JF, Hinkle, S, Nave, AF, Portillo, JM, Page, GP & Stevenson, RE; Honduran Neural Tube Defect Project Team (2002) Dietary intake and blood folate levels in Honduran women of childbearing age. J Child Neurol 17, 341346.
25.Ganji, V & Kafai, MR (2006) Trends in serum folate, RBC folate, and circulating total homocysteine concentrations in the United States: analysis from National Health and Nutrition Examination Surveys, 1988–1994, 1999–2000, and 2001–2002. J Nutr 136, 153158.
26.Pfeiffer, CM, Caudill, SP, Gunter, EW, Osterloh, J & Sampson, EJ (2005) Biochemical indicators of B vitamin status in the US population after folic acid fortification: results from the National Health and Nutrition Examination Survey 1999–2000. Am J Clin Nutr 82, 442450.
27. Healthy People 2010 (2001) Objectives for improving health: 16. Increase the proportion of pregnancies begun with an optimum folic acid level. http://www.healthypeople.gov/document/tableofcontents.htm#parta (accessed May 2006).
28.Casanueva, E, Pfeffer, F, Drijanski, A, Fernandez-Gaxiola, AC, Gutierrez-Valenzuela, V & Rothenberg, SJ (2003) Iron and folate status before pregnancy and anemia during pregnancy. Ann Nutr Metab 47, 6063.
29.Mojtalbi, R (2004) Body mass index and serum folate in childbearing age women. Eur J Epidemiol 19, 10291036.
30.Watkins, ML, Scanlon, KS, Mulinare, J & Khoury, MJ (1996) Is maternal obesity a risk factor for anencephaly and spina bifida? Epidemiology 7, 507512.
31.Sweeney, MR, McPartlin, J & Scott, J (2007) Folic acid fortification and public health: report on threshold doses above which unmetabolised folic acid appear in serum. BMC Public Health 7, 4147.
32.Kelly, P, McPartlin, J, Goggins, M, Weir, DG & Scott, JM (1997) Unmetabolized folic acid in serum: acute studies in subjects consuming fortified food and supplements. Am J Clin Nutr 65, 17901795.
33.Secretaria de Salud (2004) Situacion de Salud en Honduras. Indicadores Básicos, 2004. Tegucigalpa, Honduras: Secretaria de Salud.
34.Hertrampf, E, Cortes, F, Erickson, JD, Cayazzo, M, Freire, W, Bailey, LB, Howson, C, Kauwell, GP & Pfeiffer, C (2003) Consumption of folic acid-fortified bread improves folate status in women of reproductive age in Chile. J Nutr 133, 31663169.
35.Feinleib, M, Beresford, SA, Bowman, BA, Mills, JL, Rader, JI, Selhub, J & Yetley, EA (2001) Folate fortification for the prevention of birth defects: case study. Am J Epidemiol 154, S60S69.
36.Martínez de Villarreal, L, Pérez, JZ, Vázquez, PA et al. (2002) Decline of neural tube defects cases after a folic acid campaign in Nuevo León, México. Teratology 66, 249256.
37.Berger, J, Thanh, HT, Cavalli-Sforza, T, Smitasiri, S, Khan, NC, Milani, S, Hoa, PT, Quang, ND & Viteri, F (2005) Community mobilization and social marketing to promote weekly iron–folic acid supplementation in women of reproductive age in Vietnam: impact on anemia and iron status. Nutr Rev 63, S95S108.
38.Paulino, LS, Angeles-Agdeppa, I, Etorma, UM, Ramos, AC & Cavalli-Sforza, T (2005) Weekly iron–folic acid supplementation to improve iron status and prevent pregnancy anemia in Filipino women of reproductive age: the Philippine experience through government and private partnership. Nutr Rev 63, S109S115.
39.Angeles-Agdeppa, I, Paulino, LS, Ramos, AC, Etorma, UM, Cavalli-Sforza, T & Milani, S (2005) Government–industry partnership in weekly iron–folic acid supplementation for women of reproductive age in the Philippines: impact on iron status. Nutr Rev 63, S116S125.
40.Kanal, K, Busch-Hallen, J, Cavalli-Sforza, T, Crape, B & Smitasiri, S; Cambodian Weekly Iron–Folic Acid Program Team (2005) Weekly iron–folic acid supplements to prevent anemia among Cambodian women in three settings: process and outcomes of social marketing and community mobilization. Nutr Rev 63, S126S133.
41.Longfils, P, Heang, UK, Soeng, H & Sinuon, M (2005) Weekly iron and folic acid supplementation as a tool to reduce anemia among primary school children in Cambodia. Nutr Rev 63, S139S145.
42.Garcia, J, Datol-Barret, E & Dizon, M (2005) Industry experience in promoting weekly iron-folic acid supplementation in the Philippines. Nutr Rev 63, S146S151.

Keywords

Effect of different dosage and administration schedules of folic acid on blood folate levels in a population of Honduran women of reproductive age

  • J Rosenthal (a1), G Milla (a2), A Flores (a1), M Yon (a2), C Pfeiffer (a1), E Umaña (a2), N Skerrette (a1), F Barahona (a3) and The Cooperative Folic Acid Research Group†...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed