Skip to main content Accessibility help
×
Home

Do dietary patterns in older men influence change in homocysteine through folate fortification? The Normative Aging Study

  • Kim TB Knoops (a1), Avron Spiro (a2), Lisette CPGM de Groot (a1), Daan Kromhout (a1), Wija A van Staveren (a1) and Katherine L Tucker (a3)...

Abstract

Objective

We aimed to describe the difference in B-vitamin intake and in plasma B-vitamin and homocysteine concentrations before and after folic acid fortification, in relation to dietary patterns.

Design

The Normative Aging Study (NAS) is a longitudinal study on ageing. Between 1961 and 1970, 2280 male volunteers aged 21–80 years (mean 42 years) were recruited. Dietary intake data have been collected since 1987 and assessment of plasma B vitamins and homocysteine was added in 1993.

Setting

Boston, Massachusetts, USA.

Subjects

In the present study, 354 men who had completed at least one FFQ and one measurement of homocysteine, both before and after the fortification period, were included.

Results

Three dietary patterns were identified by cluster analysis: (i) a prudent pattern, with relatively high intakes of fruit, vegetables, low-fat milk and breakfast cereals; (ii) an unhealthy pattern, with high intakes of baked products, sweets and added fats; and (iii) a low fruit and vegetable but relatively high alcohol intake pattern. Dietary intake and plasma concentrations of folate increased significantly (P < 0·05) among all dietary patterns after the fortification period. Homocysteine tended to decrease in supplement non-users and in subjects in the high alcohol, low fruit and vegetable dietary pattern (both P = 0·08).

Conclusions

After fortification with folic acid, folate intake and plasma folate concentration increased significantly in all dietary patterns. There was a trend towards greatest homocysteine lowering in the high alcohol, low fruit and vegetable group.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Do dietary patterns in older men influence change in homocysteine through folate fortification? The Normative Aging Study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Do dietary patterns in older men influence change in homocysteine through folate fortification? The Normative Aging Study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Do dietary patterns in older men influence change in homocysteine through folate fortification? The Normative Aging Study
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email katherine.tucker@tufts.edu

References

Hide All
1.Nygard, O, Vollset, SE, Refsum, H, Stensvold, I, Tverdal, A, Nordrehaug, JE, Ueland, M & Kvale, G (1995) Total plasma homocysteine and cardiovascular risk profile. The Hordaland Homocysteine Study. JAMA 274, 15261533.
2.Graham, IM, Daly, LE, Refsum, HM et al. (1997) Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA 277, 17751781.
3.Homocysteine Studies Collaboration (2002) Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288, 20152022.
4.Bostom, AG, Rosenberg, IH, Silbershatz, H, Jacques, PF, Selhub, J, D’Agostino, RB, Wilson, PW & Wolf, PA (1999) Nonfasting plasma total homocysteine levels and stroke incidence in elderly persons: the Framingham Study. Ann Intern Med 131, 352355.
5.Tucker, KL, Qiao, N, Scott, T, Rosenberg, I & Spiro, A 3rd (2005) High homocysteine and low B vitamins predict cognitive decline in aging men: the Veterans Affairs Normative Aging Study. Am J Clin Nutr 82, 627635.
6.McLean, RR, Jacques, PF, Selhub, J, Tucker, KL, Samelson, EJ, Broe, KE, Hannan, MT, Cupples, LA & Kiel, DP (2004) Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med 350, 20422049.
7.Nygard, O, Nordrehaug, JE, Refsum, H, Ueland, PM, Farstad, M & Vollset, SE (1997) Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 337, 230236.
8.Homocysteine Lowering Trialists’ Collaboration (2005) Dose-dependent effects of folic acid on blood concentrations of homocysteine: a meta-analysis of the randomized trials. Am J Clin Nutr 82, 806812.
9.Panagiotakos, DB, Pitsavos, C, Zeimbekis, A, Chrysohoou, C & Stefanadis, C (2005) The association between lifestyle-related factors and plasma homocysteine levels in healthy individuals from the ‘ATTICA’ Study. Int J Cardiol 98, 471477.
10.Verhoef, P & de Groot, LC (2005) Dietary determinants of plasma homocysteine concentrations. Semin Vasc Med 5, 110123.
11.Gao, X, Yao, M, McCrory, MA, Ma, G, Li, Y, Roberts, SB & Tucker, KL (2003) Dietary pattern is associated with homocysteine and B vitamin status in an urban Chinese population. J Nutr 133, 36363642.
12.Villegas, R, Salim, A, Collins, MM, Flynn, A & Perry, IJ (2004) Dietary patterns in middle-aged Irish men and women defined by cluster analysis. Public Health Nutr 7, 10171024.
13.Fung, TT, Rimm, EB, Spiegelman, D, Rifai, N, Tofler, GH, Willett, WC & Hu, FB (2001) Association between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk. Am J Clin Nutr 73, 6167.
14.Food and Drug Administration (1996) Food standards: amendment of standards of identity for enriched grain products to require addition of folic acid. Fed Regist 61, 87818797.
15.Jacques, PF, Selhub, J, Bostom, AG, Wilson, PW & Rosenberg, IH (1999) The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med 340, 14491454.
16.Choumenkovitch, SF, Selhub, J, Wilson, PW, Rader, JI, Rosenberg, IH & Jacques, PF (2002) Folic acid intake from fortification in United States exceeds predictions. J Nutr 132, 27922798.
17.Tucker, KL, Mahnken, B, Wilson, PW, Jacques, P & Selhub, J (1996) Folic acid fortification of the food supply. Potential benefits and risks for the elderly population. JAMA 276, 18791885.
18.Todaro, JF, Shen, BJ, Niaura, R, Spiro, A 3rd & Ward, KD (2003) Effect of negative emotions on frequency of coronary heart disease (The Normative Aging Study). Am J Cardiol 92, 901906.
19.Jacques, PF, Sulsky, SI, Sadowski, JA, Philips, JC, Rush, D & Willett, WC (1993) Comparison of micronutrient intake measured by a dietary questionnaire and biochemical indicators of micronutrient status. Am J Clin Nutr 57, 182189.
20.Tucker, KL, Rich, S, Rosenberg, I, Jacques, P, Dallal, G, Wilson, PW & Selhub, J (2000) Plasma vitamin B-12 concentrations relate to intake source in the Framingham Offspring study. Am J Clin Nutr 71, 514522.
21.Araki, A & Sako, Y (1987) Determination of free and total homocysteine in human plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr 422, 4352.
22.Selhub, J, Jacques, PF, Wilson, PW, Rush, D & Rosenberg, IH (1993) Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 270, 26932698.
23.Shin-Buehring, Y, Rasshofer, R & Endres, W (1981) A new enzymatic method for pyridoxal-5′-phosphate determination. J Inherit Metab Dis 4, 123124.
24.Feunekes, GI, van’t Veer, P, van Staveren, WA & Kok, FJ (1999) Alcohol intake assessment: the sober facts. Am J Epidemiol 150, 105112.
25.Jacques, PF & Tucker, KL (2001) Are dietary patterns useful for understanding the role of diet in chronic disease? Am J Clin Nutr 73, 12.
26.Hu, FB, Rimm, E, Smith-Warner, SA, Feskanich, D, Stampfer, MJ, Ascherio, A, Sampson, L & Willett, WC (1999) Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am J Clin Nutr 69, 243249.
27.Millen, BE, Quatromoni, PA, Pencina, M, Kimokoti, R, Nam, BH, Cobain, S, Kozak, W, Appugliese, DP, Ordovas, J & D’Agostino, RB (2005) Unique dietary patterns and chronic disease risk profiles of adult men: the Framingham nutrition studies. J Am Diet Assoc 105, 17231734.
28.Millen, BE, Quatromoni, PA, Copenhafer, DL, Demissie, S, O’Horo, CE & D’Agostino, RB (2001) Validation of a dietary pattern approach for evaluating nutritional risk: the Framingham Nutrition Studies. J Am Diet Assoc 101, 187194.
29.Newby, PK, Muller, D & Tucker, KL (2004) Associations of empirically derived eating patterns with plasma lipid biomarkers: a comparison of factor and cluster analysis methods. Am J Clin Nutr 80, 759767.
30.Newby, PK, Weismayer, C, Akesson, A, Tucker, KL & Wolk, A (2006) Long-term stability of food patterns identified by use of factor analysis among Swedish women. J Nutr 136, 626633.
31.Ganji, V & Kafai, MR (2006) Trends in serum folate, RBC folate, and circulating total homocysteine concentrations in the United States: analysis of data from National Health and Nutrition Examination Surveys, 1988–1994, 1999–2000, and 2001–2002. J Nutr 136, 153158.
32.Lawrence, JM, Petitti, DB, Watkins, M & Umekubo, MA (1999) Trends in serum folate after food fortification. Lancet 354, 915916.
33.Choumenkovitch, SF, Jacques, PF, Nadeau, MR, Wilson, PW, Rosenberg, IH & Selhub, J (2001) Folic acid fortification increases red blood cell folate concentrations in the Framingham study. J Nutr 131, 32773280.
34.Smith, AD, Kim, YI & Refsum, H (2008) Is folic acid good for everyone? Am J Clin Nutr 87, 517533.
35.Pfeiffer, CM, Caudill, SP, Gunter, EW, Osterloh, J & Sampson, EJ (2005) Biochemical indicators of B vitamin status in the US population after folic acid fortification: results from the National Health and Nutrition Examination Survey 1999–2000. Am J Clin Nutr 82, 442450.
36.Anderson, JL, Jensen, KR, Carlquist, JF, Bair, TL, Horne, BD & Muhlestein, JB (2004) Effect of folic acid fortification of food on homocysteine-related mortality. Am J Med 116, 158164.
37.Wald, DS, Law, M & Morris, JK (2002) Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325, 1202.
38.de Bree, A, Verschuren, WM, Blom, HJ, Nadeau, M, Trijbels, FJ & Kromhout, D (2003) Coronary heart disease mortality, plasma homocysteine, and B-vitamins: a prospective study. Atherosclerosis 166, 369377.
39.Verhaar, MC, Stroes, E & Rabelink, TJ (2002) Folates and cardiovascular disease. Arterioscler Thromb Vasc Biol 22, 613.
40.Verhaar, MC, Wever, RM, Kastelein, JJ, van Dam, T, Koomans, HA & Rabelink, TJ (1998) 5-Methyltetrahydrofolate, the active form of folic acid, restores endothelial function in familial hypercholesterolemia. Circulation 97, 237241.
41.Voutilainen, S, Virtanen, JK, Rissanen, TH et al. (2004) Serum folate and homocysteine and the incidence of acute coronary events: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr 80, 317323.
42.Voutilainen, S, Lakka, TA, Porkkala-Sarataho, E, Rissanen, T, Kaplan, GA & Salonen, JT (2000) Low serum folate concentrations are associated with an excess incidence of acute coronary events: the Kuopio Ischaemic Heart Disease Risk Factor Study. Eur J Clin Nutr 54, 424428.

Keywords

Do dietary patterns in older men influence change in homocysteine through folate fortification? The Normative Aging Study

  • Kim TB Knoops (a1), Avron Spiro (a2), Lisette CPGM de Groot (a1), Daan Kromhout (a1), Wija A van Staveren (a1) and Katherine L Tucker (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed