Skip to main content Accessibility help
×
Home

Dietary iron and calcium intakes during pregnancy are associated with lower risk of prematurity, stillbirth and neonatal mortality among women in Tanzania

  • Dominic Mosha (a1) (a2), Enju Liu (a2), Ellen Hertzmark (a2) (a3), Grace Chan (a2), Christopher Sudfeld (a2), Honorati Masanja (a1) and Wafaie Fawzi (a2) (a3) (a4)...

Abstract

Objective

Prematurity, stillbirth and other adverse birth outcomes remain major concerns in resource-limited settings. Poor dietary intake of micronutrients during pregnancy has been associated with increased risk of adverse outcomes. We determined the relationships between dietary Fe and Ca intakes during pregnancy and risks of adverse birth outcomes among HIV-negative women.

Design

Women’s diet was assessed through repeated 24 h diet recalls in pregnancy. Mean intakes of total Fe, Fe from animal sources and Ca during pregnancy were examined in relation to adverse birth outcomes and neonatal mortality. Women were prescribed daily Fe supplements as per standard perinatal care.

Setting

Dar es Salaam, Tanzania.

Subjects

A cohort of 7634 pregnant women.

Results

Median (interquartile range) daily dietary intake of total Fe, animal Fe and Ca was 11·9 (9·3–14·7), 0·5 (0–1·1) and 383·9 (187·4–741·2) mg, respectively. Total Fe intake was significantly associated with reduced risk of stillbirth (trend over quartiles, P=0·010). Animal Fe intake was significantly associated with reduced risk of preterm birth and extreme preterm birth. Animal Fe intake was inversely related to neonatal mortality risk; compared with women in the lowest intake quartile, those in the top quartile were 0·51 times as likely to have neonatal death (95 % CI 0·33, 0·77). Higher Ca intake was associated with reduced risk of preterm birth (relative risk; 95 % CI: 0·76; 0·65, 0·88) and extreme preterm birth (0·63; 0·47, 0·86). Women in the highest Ca intake quartile had reduced risk of neonatal mortality (0·59; 0·37, 0·92).

Conclusions

Daily dietary Fe and Ca intakes among pregnant women are very low. Improvement of women’s diet quality during gestation is likely to improve the risks of adverse birth outcomes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary iron and calcium intakes during pregnancy are associated with lower risk of prematurity, stillbirth and neonatal mortality among women in Tanzania
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary iron and calcium intakes during pregnancy are associated with lower risk of prematurity, stillbirth and neonatal mortality among women in Tanzania
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary iron and calcium intakes during pregnancy are associated with lower risk of prematurity, stillbirth and neonatal mortality among women in Tanzania
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

* Corresponding author: Email dfmosha@hotmail.com

References

Hide All
1. Tulchinsky, TH (2010) Micronutrient deficiency conditions: global health issues. Public Health Rev 32, 243255.
2. Darnton-Hill, I & Mkparu, UC (2015) Micronutrients in pregnancy in low- and middle-income countries. Nutrients 7, 17441768.
3. Grieger, JA, Grzeskowiak, LE & Clifton, VL (2014) Preconception dietary patterns in human pregnancies are associated with preterm delivery. J Nutr 144, 10751080.
4. Haider, BA & Bhutta, ZA (2015) Multiple-micronutrient supplementation for women during pregnancy. Cochrane Database Syst Rev issue 11, CD004905.
5. Lawn, JE, Cousens, S, Zupan, J et al. (2005) 4 million neonatal deaths: when? Where? Why? Lancet 365, 891900.
6. Tomashek, KM, Shapiro-Mendoza, CK, Davidoff, MJ et al. (2007) Differences in mortality between late-preterm and term singleton infants in the United States, 1995–2002. J Pediatr 151, 450456, 456.e1.
7. Stevens, GA, Finucane, MM, De-Regil, LM et al. (2013) Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: a systematic analysis of population-representative data. Lancet Glob Health 1, e16e25.
8. Ladipo, OA (2000) Nutrition in pregnancy: mineral and vitamin supplements. Am J Clin Nutr 72, 1 Suppl., 280S290S.
9. World Health Organization (2012) Guideline: Daily Iron and Folic Acid Supplementation in Pregnant Women. Geneva: WHO.
10. Alwan, NA, Greenwood, DC, Simpson, NA et al. (2011) Dietary iron intake during early pregnancy and birth outcomes in a cohort of British women. Hum Reprod 26, 911919.
11. Papadopoulou, E, Stratakis, N, Roumeliotaki, T et al. (2013) The effect of high doses of folic acid and iron supplementation in early-to-mid pregnancy on prematurity and fetal growth retardation: the mother–child cohort study in Crete, Greece (Rhea study). Eur J Nutr 52, 327336.
12. Joy, EJ, Ander, EL, Young, SD et al. (2014) Dietary mineral supplies in Africa. Physiol Plant 151, 208229.
13. Ritchie, LD, Fung, EB, Halloran, BP et al. (1998) A longitudinal study of calcium homeostasis during human pregnancy and lactation and after resumption of menses. Am J Clin Nutr 67, 693701.
14. Buppasiri, P, Lumbiganon, P, Thinkhamrop, J et al. (2015) Calcium supplementation (other than for preventing or treating hypertension) for improving pregnancy and infant outcomes. Cochrane Database Syst Rev issue 2, CD007079.
15. World Health Organization (2013) Guideline: Calcium Supplementation in Pregnancy. Geneva: WHO.
16. Fawzi, WW, Msamanga, GI, Urassa, W et al. (2007) Vitamins and perinatal outcomes among HIV-negative women in Tanzania. N Engl J Med 356, 14231431.
17. Lukmanji, Z, Hertzmark, E, Mlingi, N et al. (2008) Tanzania Food Composition Tables. Dar es Salaam and Boston, MA: Muhimbili University of Health and Allied Sciences, Tanzania Food and Nutrition Centre, and Harvard School of Public Health.
18. Villar, J, Cheikh Ismail, L, Victora, CG et al. (2014) International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet 384, 857868.
19. Miettinen, OS (1985) Theoretical Epidemiology: Principles of Occurrence Research. New York: John Wiley & Sons.
20. Filmer, D & Pritchett, LH (2001) Estimating wealth effects without expenditure data – or tears: an application to educational enrollments in states in India. Demography 38, 115132.
21. Institute of Medicine, Food and Nutrition Board (2001) Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc: A Report of the Panel of Micronutrients. Washington, DC: National Academy Press.
22. Blumfield, ML, Hure, AJ, Macdonald-Wicks, L et al. (2013) A systematic review and meta-analysis of micronutrient intakes during pregnancy in developed countries. Nutr Rev 71, 118132.
23. Kamau-Mbuthia, E & Elmadfa, I (2007) Diet quality of pregnant women attending an antenatal clinic in Nakuru, Kenya. Ann Nutr Metab 51, 324330.
24. Jwa, SC, Fujiwara, T, Yamanobe, Y et al. (2015) Changes in maternal hemoglobin during pregnancy and birth outcomes. BMC Pregnancy Childbirth 15, 80.
25. Haider, BA, Olofin, I, Wang, M et al. (2013) Anaemia, prenatal iron use, and risk of adverse pregnancy outcomes: systematic review and meta-analysis. BMJ 346, f3443.
26. Mwangi, MN, Roth, JM, Smit, MR et al. (2015) Effect of daily antenatal iron supplementation on Plasmodium infection in Kenya women: a randomized control trial. JAMA 314, 10091020.
27. Abdullahi, H, Gasim, GI, Saeed, A et al. (2014) Antenatal iron and folic acid supplementation use by pregnant women in Khartoum, Sudan. BMC Res Notes 7, 498.
28. Malhotra, N, Upadhyay, RP, Bhilwar, M et al. (2014) The role of maternal diet and iron–folic acid supplements in influencing birth weight: evidence from India’s National Family Health Survey. J Trop Pediatr 60, 454460.
29. Lopez, MA & Martos, FC (2004) Iron availability: an updated review. Int J Food Sci Nutr 55, 597606.
30. Titaley, CR, Dibley, MJ, Roberts, CL et al. (2010) Iron and folic supplements and reduced early neonatal deaths in Indonesia. Bull World Health Organ 88, 500508.
31. Zeng, L, Dibley, MJ, Cheng, Y et al. (2008) Impact of micronutrient supplementation during pregnancy on birth weight, duration of gestation, and perinatal mortality in rural western China: double blind cluster randomised controlled trial. BMJ 337, a2001.
32. Ngoc, NT, Merialdi, M, Abdel-Aleem, H et al. (2006) Causes of stillbirths and early neonatal deaths: data from 7993 pregnancies in six developing countries. Bull World Health Organ 84, 699705.
33. Yasmin, S, Osrin, D, Paul, E et al. (2001) Neonatal mortality of low-birth-weight infants in Bangladesh. Bull World Health Organ 79, 608614.
34. Hyder, SM, Persson, LA, Chowdhury, AM et al. (2002) Do side-effects reduce compliance to iron supplementation? A study of daily- and weekly-dose regimens in pregnancy. J Health Popul Nutr 20, 175179.
35. Ramakrishnan, U, Imhoff-Kunsch, B & Martorell, R (2014) Maternal nutrition interventions to improve maternal, newborn, and child health outcomes. Nestle Nutr Inst Workshop Ser 78, 7180.
36. Khoushabi, F & Saraswathi, G (2010) Impact of nutritional status on birth weight of neonates in Zahedan City, Iran. Nutr Res Pract 4, 339344.
37. Sabour, H, Hossein-Nezhad, A, Maghbooli, Z et al. (2006) Relationship between pregnancy outcomes and maternal vitamin D and calcium intake: a cross-sectional study. Gynecol Endocrinol 22, 585589.

Keywords

Dietary iron and calcium intakes during pregnancy are associated with lower risk of prematurity, stillbirth and neonatal mortality among women in Tanzania

  • Dominic Mosha (a1) (a2), Enju Liu (a2), Ellen Hertzmark (a2) (a3), Grace Chan (a2), Christopher Sudfeld (a2), Honorati Masanja (a1) and Wafaie Fawzi (a2) (a3) (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed