Skip to main content Accessibility help
×
Home

Development and validation of a short questionnaire to assess sodium intake

  • Karen E Charlton (a1), Krisela Steyn (a1), Naomi S Levitt (a1) (a2), Deborah Jonathan (a1), Jabulisiwe V Zulu (a3) and Johanna H Nel (a4)...

Abstract

Objectives

To develop and validate a short food-frequency questionnaire to assess habitual dietary salt intake in South Africans and to allow classification of individuals according to intakes above or below the maximum recommended intake of 6 g salt day−1.

Design

Cross-sectional validation study in 324 conveniently sampled men and women.

Methods

Repeated 24-hour urinary Na values and 24-hour dietary recalls were obtained on three occasions. Food items consumed by >5% of the sample and which contributed ≥50 mg Na serving−1 were included in the questionnaire in 42 categories. A scoring system was devised, based on Na content of one index food per category and frequency of consumption.

Results

Positive correlations were found between Na content of 35 of the 42 food categories in the questionnaire and total Na intake, calculated from 24-hour recall data. Total Na content of the questionnaire was associated with Na estimations from 24-hour recall data (r = 0.750; P < 0.0001; n = 328) and urinary Na (r = 0.152; P = 0.0105; n = 284). Urinary Na was higher for subjects in tertile 3 than tertile 1 of questionnaire Na content (P < 0.05). Questionnaire Na content of <2400 and ≥2400 mg day−1 equated to a reference cut-off score of 48 and corresponded to mean (standard deviation) urinary Na values of 145 (68) and 176 (99) mmol day−1, respectively (P < 0.05). Sensitivity and specificity against urinary Na ≥100 and <100 mmol day−1 was 12.4% and 93.9%, respectively.

Conclusion

A 42-item food-frequency questionnaire has been shown to have content-, construct- and criterion-related validity, as well as internal consistency, with regard to categorising individuals according to their habitual salt intake; however, the devised scoring system needs to show improved sensitivity.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Development and validation of a short questionnaire to assess sodium intake
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Development and validation of a short questionnaire to assess sodium intake
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Development and validation of a short questionnaire to assess sodium intake
      Available formats
      ×

Copyright

Corresponding author

*Correspondence address: Smart Foods Centre, Faculty of Health and Behavioural Sciences, University of Wollongong, Wollongong, Australia. Email karenc@uow.edu.au

References

Hide All
1MacGregor, GA . Sodium is more important than calcium in essential hypertension. Hypertension 1985; 7: 628637.
2Geleijnse, JM, Kok, FJ, Grobbee, DE. Impact of dietary and lifestyle factors on the prevalence of hypertension in Western populations. European Journal of Public Health 2004; 14: 235239.
3Dyer, A, Elliott, P, Chee, D, Stamler, J. Urinary biochemical markers of dietary intake in the INTERSALT study. American Journal of Clinical Nutrition 1997; 65: 1246S1253S.
4Mattes, RD, Donnelly, D. Relative contributions of dietary sodium sources. Journal of the American College of Nutrition 1991; 10: 383393.
5Tanaka, T, Okamura, T, Miura, K, Kadowaki, T, Ueshima, H, Nakagawa, H, et al. . A simple method to estimate populational 24-h urinary sodium and potassium excretion using a casual urine specimen. Journal of Human Hypertension 2002; 16: 97103.
6Sowers, M, Stumbo, P. A method to assess sodium intake in populations. Journal of the American Dietetic Association 1986; 86: 11961202.
7Hankin, JH, Reynolds, WE, Margen, S. A short method for epidemiological studies. II Variability of measured nutrient intakes. American Journal of Clinical Nutrition 1967; 20: 935945.
8Pietinen, P, Tanskanen, A, Tuomilehto, J. Assessment of sodium intake by a short dietary questionnaire. Scandinavian Journal of Social Medicine 1982; 10: 105112.
9Mittelmark, MB, Sternberg, B. Assessment of salt use at the table: comparison of observed and reported behavior. American Journal of Public Health 1985; 75: 12151216.
10Barlow, RJ, Connell, MA, Levendig, BJ, Gear, JS, Milne, FJ. A comparative study of urinary sodium and potassium excretion in normotensive urban black and white South African males. South African Medical Journal 1982; 62: 939941.
11Gibson, RS . Principles of Nutritional Assessment, 2nd ed. New York: Oxford University Press, 2005; 55.
12Venter, CS, McIntyre, UE, Vorster, HH. The development and testing of a food portion photograph book for use in an African population. Journal of Human Nutrition and Dietetics 2000; 13: 205218.
13Steyn, NP, Nel, JH, Casey, A. Secondary data analyses of dietary surveys undertaken in South Africa to determine usual food consumption of the population. Public Health Nutrition 2003; 6: 631644.
14Charlton, KE, Steyn, K, Levitt, NS, Zulu, JV, Jonathan, D, Veldman, FJ, et al. . Diet and blood pressure in South Africa: the intake of foods containing sodium, potassium, calcium and magnesium in three ethnic groups. Nutrition 2005; 21: 3950.
15Badenhorst, CJ, Steyn, NP, Jooste, PL, Nel, JH, Kruger, M, Oelofse, A, et al. . Nutritional status of Pedi schoolchildren aged 6–14 years in two rural areas of Lebowa: a comprehensive nutritional survey of dietary intake, anthropometric, biochemical, haematological and clinical measurements. South African Journal of Food Science and Nutrition 1993; 5: 112119.
16Steyn, NP, Badenhorst, CJ, Nel, JH. The meal pattern and snacking habits of schoolchildren in two rural areas of Lebowa. South African Journal of Food Science and Nutrition 1993; 5: 59.
17Steyn, NP, Burger, S, Monyeki, KD, Alberts, M, Nthangeni, G. Dietary Intake of the Adult Population of Dikgale 1998. Sovenga: University of the North, 1998.
18Steyn, NP, Burger, S, Monyeki, KD, Alberts, M, Nthangeni, G. Seasonal variation in the dietary intake of the adult population of Dikgale. South African Journal of Clinical Nutrition 2001; 14: 140145.
19Bourne, LT, Langenhoven, ML, Steyn, K, Jooste, PL, Laubscher, JA, Van der Vyfer, E. Nutrient intake in the urban African population of the Cape Peninsula, South Africa. The BRISK study. Central African Journal of Medicine 1993; 39: 238247.
20Bourne, LT, Langenhoven, ML, Steyn, K, Jooste, PL, Laubscher, JA. The food and meal pattern in the black population of the Cape Peninsula, South Africa. The BRISK study. East African Medical Journal 1994; 7: 695702.
21Wolmarans, P, Langenhoven, ML, Van Eck, M, Swanepoel, ASP. The contribution of different food groups to the energy, fat, and fibre intake of the Coronary Risk Factor Study (CORIS) population. South African Medical Journal 1989; 75: 167171.
22Steyn, K, Steyn, M, Swanepoel, AS, Jordaan, PC, Jooste, PL, Fourie, JM, et al. . Twelve-year results of the Coronary Risk Factor Study (CORIS). International Journal of Epidemiology 1997; 26: 964971.
23Steyn, K, Fourie, JM, Benade, AJ, Roussouw, JE, Langenhoven, ML, Joubert, G, et al. . Factors associated with high density lipoprotein cholesterol in a population with high high density lipoprotein cholesterol levels. Arteriosclerosis 1989; 9: 390397.
24Langenhoven, MJ, Conradie, PJ, Wolmarans, P, Faber, M. MRC Food Quantities Manual, 2nd ed. Tygerberg: Medical Research Council, 1991.
25Langenhoven, M, Kruger, M, Gouws, E, Faber, M. MRC Food Composition Tables, 3rd ed. Parow: Medical Research Council, 1991.
26Tull, DS, Hawkins, DI. Marketing Research. Measurement and Method, 6th ed. New York: Macmillan Publishing Company, 1993; 315318.
27Bingham, SA, Cummings, JH. The use of 4-aminobenzoic acid as a marker to validate the completeness of 24 h urine collections in man. Clinical Science 1983; 64: 629635.
28Laposata, M . New England Journal of Medicine SI Unit Conversion Guide. Boston, MA: New England Journal of Medicine Books, 1992.
29National High Blood Pressure Education Program . The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. NIH Publication No. 03-5231. Washington, DC: US Department of Health and Human Services, May 2003.
30Crocco, SC . The role of sodium in food processing. Journal of the American Dietetic Association 1982; 80: 3639.
31Briefel, R, Alaimo, K, Wright, J, McDowell, M. Dietary sources of salt and sodium. Presented at the NHLBI Workshop on Implementing Recommendations for Dietary Salt Reduction, Rockville, MD, 2526 August 1994.
32James, WPT, Ralph, A, Sanchez-Castillo, CP. The dominance of salt in manufactured food in the sodium intake of affluent societies. Lancet 1987; i: 426429.
33Sanchez-Castillo, CP, Warrender, S, Whitehead, TP, James, WP. An assessment of the sources of dietary salt in a British population. Clinical Science 1987; 72: 95102.
34Pomrehn, PR, Clarke, WR, Sowers, MF, Wallace, RB, Lauer, RM. Community differences in blood pressure levels and drinking water sodium. American Journal of Epidemiology 1983; 118: 6071.
35Sanchez-Castillo, CP, Branch, WJ, James, WP. A test of the validity of the lithium-marker technique for monitoring dietary sources of salt in men. Clinical Science 1987; 72: 8794.
36Becker, H, Bester, M, Reyneke, N, Labadarios, D, Monyeki, KD, Steyn, NP. Nutrition related knowledge and practices of hypertensive adults attending hypertensive clinics at day hospitals in the Cape Metropole. Curatonis 2004; 27: 6369.
37Charlton, KE, Steyn, K, Levitt, NS, Zulu, J, Jonathan, D, Veldman, D, et al. . Urinary excretion and reported dietary intake of sodium, potassium, calcium and magnesium in normotensive and hypertensive South Africans from three ethnic groups. European Journal of Cardiovascular Prevention and Rehabilitation 2005; 12: 355362.
38Charlton, KE . Impact of dietary manipulation of sodium, potassium, calcium and magnesium on blood pressure in hypertensive black South Africans. PhD thesis, University of Cape Town, 2006.
39Luft, FC, Aronoff, GR, Sloan, RS, Fineberg, NS. Intra- and inter-individual variability in sodium intake in normal subjects and in patients with renal insufficiency. American Journal of Kidney Diseases 1986; 7: 375380.

Keywords

Development and validation of a short questionnaire to assess sodium intake

  • Karen E Charlton (a1), Krisela Steyn (a1), Naomi S Levitt (a1) (a2), Deborah Jonathan (a1), Jabulisiwe V Zulu (a3) and Johanna H Nel (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed