Skip to main content Accessibility help
×
Home

Comparison of the ability to identify cardiometabolic risk factors between two new body indices and waist-to-height ratio among Chinese adults with normal BMI and waist circumference

  • Peng Ju Liu (a1), Fang Ma (a1), Hui Ping Lou (a2) and Yan Ning Zhu (a3)

Abstract

Objective

Waist-to-height ratio (WHtR) has been reported to be more strongly associated with cardiometabolic risk factors among non-obese individuals than BMI and waist circumference (WC). A body shape index (ABSI) and body roundness index (BRI) have been proposed recently to assess obesity-related disorders or mortalities. Our aim was to compare the ability of ABSI and BRI with that of WHtR to identify cardiometabolic risk factors in Chinese adults with normal BMI and WC.

Design

Receiver-operating characteristic curves and areas under the curve (AUC) were employed to evaluate the ability of the indices (WHtR, BRI, ABSI) to identify metabolic risk factors and to determine the indices’ optimal cut-off values. The value of each index that resulted in maximization of the Youden index (sensitivity + specificity – 1) was defined as optimal. Differences in the AUC values between the indices were also evaluated.

Setting

Individuals attending a voluntary health check-up in Beijing, China, July–December 2015, were recruited to the study.

Subjects

Non-obese adults (n 1596).

Results

Among both genders, ABSI exhibited the lowest AUC value for identifying each risk factor among the three indices; the AUC value of BRI for identifying each risk factor was very close to that of WHtR, and no significant differences were observed between the AUC values of the two new indices.

Conclusions

When evaluating cardiometabolic risk factors among non-obese adults, WHtR was a simple and effective index in the assessment of cardiometabolic risk factors, BRI could be used as an alternative body index to WHtR, while ABSI could not.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Comparison of the ability to identify cardiometabolic risk factors between two new body indices and waist-to-height ratio among Chinese adults with normal BMI and waist circumference
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Comparison of the ability to identify cardiometabolic risk factors between two new body indices and waist-to-height ratio among Chinese adults with normal BMI and waist circumference
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Comparison of the ability to identify cardiometabolic risk factors between two new body indices and waist-to-height ratio among Chinese adults with normal BMI and waist circumference
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Email lpjjia@126.com

References

Hide All
1. Zalesin, KC, Franklin, BA, Miller, WM et al. (2011) Impact of obesity on cardiovascular disease. Med Clin North Am 95, 919937.
2. Nordmann, AJ, Nordmann, A, Briel, M et al. (2006) Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch Intern Med 166, 285293.
3. World Health Organization (1998) Obesity. Preventing and Managing the Global Epidemic. Report on a WHO Consultation of Obesity, 3–5 June 1997. WHO/NUT/NCD/98.1. Geneva: WHO.
4. Fox, CS, Massaro, JM, Hoffmann, U et al. (2007) Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116, 3948.
5. Walton, C, Lees, B, Crook, D et al. (1995) Body fat distribution, rather than overall adiposity, influences serum lipids and lipoproteins in healthy men independently of age. Am J Med 99, 459464.
6. National Institutes of Health (1998) Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults – The Evidence Report. Obes Res 6, Suppl. 2, 51S209S.
7. Nevill, AM, Stewart, AD, Olds, T et al. (2006) Relationship between adiposity and body size reveals limitations of BMI. Am J Phys Anthropol 129, 151156.
8. Thomas, EL, Parkinson, JR, Frost, GS et al. (2012) The missing risk: MRI and MRS phenotyping of abdominal adiposity and ectopic fat. Obesity (Silver Spring) 20, 7687.
9. Deurenberg, P, Deurenberg-Yap, M & Guricci, S (2002) Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obes Rev 3, 141146.
10. Lear, SA, Toma, M, Birmingham, CL et al. (2003) Modification of the relationship between simple anthropometric indices and risk factors by ethnic background. Metabolism 52, 12951301.
11. Brenner, DR, Tepylo, K, Eny, KM et al. (2010) Comparison of body mass index and waist circumference as predictors of cardiometabolic health in a population of young Canadian adults. Diabetol Metab Syndr 2, 28.
12. Pischon, T, Boeing, H, Hoffmann, K et al. (2008) General and abdominal adiposity and risk of death in Europe. N Engl J Med 359, 21052120.
13. Kuk, JL & Ardern, CI (2009) Influence of age on the association between various measures of obesity and all-cause mortality. J Am Geriatr Soc 57, 20772084.
14. Seidell, JC (2010) Waist circumference and waist–hip ratio in relation to all-cause mortality, cancer and sleep apnea. Eur J Clin Nutr 64, 3541.
15. Petursson, H, Sigurdsson, JA, Bengtsson, C et al. (2011) Body configuration as a predictor of mortality: comparison of five anthropometric measures in a 12 year follow-up of the Norwegian HUNT 2 study. PLoS ONE 6, e26621.
16. Ashwell, M, Gunn, P & Gibson, S (2012) Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev 13, 275286.
17. Li, WC, Chen, IC, Chang, YC et al. (2013) Waist-to-height ratio, waist circumference, and body mass index as indices of cardiometabolic risk among 36 642 Taiwanese adults. Eur J Nutr 52, 5765.
18. Hsieh, SD & Muto, T (2005) The superiority of waist-to-height ratio as an anthropometric index to evaluate clustering of coronary risk factors among non-obese men and women. Prev Med 40, 216220.
19. Park, YS & Kim, JS (2012) Association between waist-to-height ratio and metabolic risk factors in Korean adults with normal body mass index and waist circumference. Tohoku J Exp Med 228, 18.
20. Zhu, Q, Shen, F, Ye, T et al. (2014) Waist-to-height ratio is an appropriate index for identifying cardiometabolic risk in Chinese individuals with normal body mass index and waist circumference. J Diabetes 6, 527534.
21. Donini, LM, Poggiogalle, E, Del Balzo, V et al. (2013) How to estimate fat mass in overweight and obese subjects. Int J Endocrinol 2013, 285680.
22. Kang, SM, Yoon, JW, Ahn, HY et al. (2011) Android fat depot is more closely associated with metabolic syndrome than abdominal visceral fat in elderly people. PLoS One 6, e27694.
23. Muller, MJ, Lagerpusch, M, Enderle, J et al. (2012) Beyond the body mass index: tracking body composition in the pathogenesis of obesity and the metabolic syndrome. Obes Rev 13, 613.
24. Krakauer, NY & Krakauer, JC (2012) A new body shape index predicts mortality hazard independently of body mass index. PLoS One 7, e39504.
25. He, S & Chen, X (2013) Could the new body shape index predict the new onset of diabetes mellitus in the Chinese population? PLoS One 8, e50573.
26. Krakauer, NY & Krakauer, JC (2014) Dynamic association of mortality hazard with body shape. PLoS One 9, e88793.
27. Chang, Y, Guo, X, Chen, Y et al. (2015) A body shape index and body roundness index: two new body indices to identify diabetes mellitus among rural populations in northeast China. BMC Public Health 15, 794.
28. Cheung, YB (2014) ‘A Body Shape Index’ in middle-age and older Indonesian population: scaling exponents and association with incident hypertension. PLoS One 9, e85421.
29. Haghighatdoost, F, Sarrafzadegan, N, Mohammadifard, N et al. (2014) Assessing body shape index as a risk predictor for cardiovascular diseases and metabolic syndrome among Iranian adults. Nutrition 30, 636644.
30. Thomas, DM, Bredlau, C, Bosy-Westphal, A et al. (2013) Relationship between body roundness index with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity (Silver Spring) 21, 22642271.
31. Zhang, N, Chang, Y, Guo, X et al. (2016) A Body Shape Index and Body Roundness Index: two new body indices for detecting association between obesity and hyperuricemia in rural area of China. Eur J Intern Med 29, 3236.
32. Maessen, MF, Eijsvogels, TM, Verheggen, RJ et al. (2014) Entering a new era of body indices: the feasibility of a body shape index and body roundness index to identify cardiovascular health status. PLoS One 9, e107212.
33. Chang, Y, Guo, X, Li, T et al. (2016) A Body Shape Index and Body Roundness Index: two new body indices to identify left ventricular hypertrophy among rural populations in northeast China. Heart Lung Circ 25, 358364.
34. Chobanian, AV, Bakris, GL, Black, HR et al.; National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National High Blood Pressure Education Program Coordinating Committee (2003) The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 289, 25602572.
35. Donahua, RP, Stranges, S, Reiman, K et al. (2007) Elevated cystatin C concentration and progression to pre-diabetes: the Western New York study. Diabetes Care 30, 17241729.
36. Genuth, S, Alberti, KG, Bennett, P et al. (2003) Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26, 31603167.
37. Grundy, SM, Cleeman, JI, Daniels, SR et al. (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112, 27352752.
38. Hanley, JA & McNeil, BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148, 839843.
39. Marini, MA, Succurro, E, Castaldo, E et al. (2012) Cardiometabolic risk profiles and carotid atherosclerosis in individuals with prediabetes identified by fasting glucose, postchallenge glucose, and hemoglobin A1c criteria. Diabetes Care 35, 11441149.
40. Yu, D, Huang, J, Hu, D et al. (2009) Association between pre-hypertension and clustering of cardiovascular disease risk factors among Chinese adults. J Cardiovasc Pharmacol 53, 388400.
41. Liu, PJ, Ma, F, Lou, HP et al. (2014) Utility of obesity indices in screening Chinese postmenopausal women for metabolic syndrome. Menopause 21, 509514.
42. Stefan, N, Kantartzis, K, Machann, J et al. (2008) Identification and characterization of metabolically benign obesity in humans. Arch Intern Med 168, 16091616.
43. Ruderman, NB, Schneider, SH & Berchtold, P (1981) The ‘metabolically-obese’, normal-weight individual. Am J Clin Nutr 34, 16171621.
44. Dhana, K, Kavousi, M, Ikram, MA et al. (2016) Body shape index in comparison with other anthropometric measures in prediction of total and cause-specific mortality. J Epidemiol Community Health 70, 9096.
45. Santos, DA, Silva, AM, Matias, CN et al. (2015) Utility of novel body indices in predicting fat mass in elite athletes. Nutrition 31, 948954.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed