Skip to main content Accessibility help
×
Home

Comparison of different BMI cut-offs to screen for child and adolescent obesity in urban China

  • Kun Qian (a1), Linglin Tan (a2), Shijian Li (a3), Ziang Li (a1), Feng Yu (a2), Huigang Liang (a4), Sihan Gao (a5), Xiaofan Ren (a1), Jing Zhang (a1) and Zhiruo Zhang (a1)...

Abstract

Objectives:

To determine which set of BMI cut-offs is the most appropriate to define child and adolescent obesity in urban China.

Design:

A cross-sectional study was carried out between 1 November and 31 December in 2017.

Setting:

Community Healthcare Center in Minhang District, Shanghai, China.

Participants:

A total of 12 426 children and adolescents aged 7–17 years were selected by cluster random sampling. Bioelectrical impedance analysis was the gold standard to measure body composition.

Results:

Comparisons of three sets of BMI cut-offs by sensitivity and κ value revealed that the Working Group on Obesity in China (WGOC) (sensitivity 39·9–84·0 %; κ 0·51–0·79) and WHO (sensitivity 25·5–74·5 %; κ 0·35–0·78) cut-offs were not superior to the International Obesity Task Force (IOTF) (sensitivity 47·9–92·4 %; κ 0·58–0·85) cut-offs across all subgroups. The WGOC and WHO cut-offs yielded higher misclassification rates, in the worst case, categorising 11·2 % of girls with high adiposity as normal and 44·4 % of them as overweight, while the IOTF cut-offs categorised 2·3 % as normal and 30·7 % as overweight. Individuals who were classified by the IOTF cut-offs as overweight had the lowest ratios of high adiposity (4·2–41·6 %) than by the BMI cut-offs for each subgroup. Among pubertal girls, none of the BMI-based cut-offs indicated excellent agreement with body fat percentage, and κ value of the WHO cut-offs (0·35 (95 % CI 0·29, 0·41)) was lower than the other two sets of BMI cut-offs (all P < 0·001).

Conclusions:

The IOTF cut-offs for Asian should be recommended for child obesity screening in urban China. Pubertal individuals need a more accurate indicator of obesity screening.

Copyright

Corresponding author

*Corresponding author: Email hellenzhang@sjtu.edu.cn

Footnotes

Hide All

These authors contributed equally as co-first authors.

Footnotes

References

Hide All
1.Grossman, DC, Bibbins-Domingo, K, Curry, SJet al. (2017) Screening for obesity in children and adolescents. JAMA 317, 2417.
2.De Lorenzo, A, Romano, L, Di Renzo, Let al. (2019) Triponderal mass index rather than body mass index: an indicator of high adiposity in Italian children and adolescents. Nutrition 60, 4147.
3.Cole, TJ & Lobstein, T (2012) Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes 7, 284294.
4.de Onis, M (2007) Development of a WHO growth reference for school-aged children and adolescents. World Health Organ 85, 660667.
5.Group of China Obesity Force (2004) Body mass index reference norm for screening overweight and obesity in Chinese children and adolescents. Zhonghua Liu Xing Bing Xue Za Zhi 25, 97102.
6.Hu, L, Huang, X, You, Cet al. (2017) Prevalence of overweight, obesity, abdominal obesity and obesity-related risk factors in southern China. PLoS One. Published online: 14 September 2017. doi: 10.1371/journal.pone.0183934.
7.Liu, D, Hao, YX, Zhao, TZet al. (2019) Childhood BMI and adult obesity in a Chinese sample: a 13-year follow-up study. Biomed Environ Sci 32, 162168.
8.Kail, RV & Cavanaugh, JC (2010) Human Development: A Life-Span View, 5th ed., 768 p. Boston: Cengage Learning.
9.Phillips, DC (editor) (2014) Encyclopedia of Educational Theory and Philosophy, Adolescent Development, pp. 1819. Thouand Oaks: Sage Publishing.
10.Kalra, S, Mercuri, M & Anand, SS (2013) Measures of body fat in South Asian adults. Nutr Diabetes. Published online: 27 May 2013. doi: 10.1038/nutd.2013.10.
11.Luque, V, Escribano, J, Zaragoza-Jordana, Met al. (2014) Bioimpedance in 7-year-old children: validation by dual X-ray absorptiometry – part 2: assessment of segmental composition. Ann Nutr Metab 64, 144155.
12.Bammann, K, Huybrechts, I, Vicente-Rodriguez, Get al. (2013) Validation of anthropometry and foot-to-foot bioelectrical resistance against a three-component model to assess total body fat in children: the IDEFICS study. Int J Obes (Lond) 37, 520526.
13.Kabiri, LS, Hernandez, DC & Mitchell, K (2015) Reliability, validity, and diagnostic value of a pediatric bioelectrical impedance analysis scale. Child Obes 11, 650655.
14.Meredith-Jones, KA, Williams, SM & Taylor, RW (2015) Bioelectrical impedance as a measure of change in body composition in young children. Pediatr Obes 10, 252259.
15.Houtkooper, LB, Lohman, TG, Going, SBet al. (1989) Validity of bioelectric impedance for body composition assessment in children. J Appl Physiol (1985) 66, 814821.
16.Chen, W, Jiang, H, Yang, JXet al. (2017) Body composition analysis by using bioelectrical impedance in a young healthy Chinese population: methodological considerations. Food Nutr Bull 38, 172181.
17.Achamrah, N, Colange, G, Delay, Jet al. (2018) Comparison of body composition assessment by DXA and BIA according to the body mass index: a retrospective study on 3655 measures. PLoS One. Published online: 12 July 2018. doi: 10.1371/journal.pone.0200465.
18.Williams, DP, Going, SB, Lohman, TGet al. (1992) Body fatness and risk for elevated blood pressure, total cholesterol, and serum lipoprotein ratios in children and adolescents. Am J Public Health 82, 358363.
19.Javed, A, Jumean, M, Murad, MHet al. (2015) Diagnostic performance of body mass index to identify obesity as defined by body adiposity in children and adolescents: a systematic review and meta-analysis. Pediatr Obes 10, 234244.
20.Cohen, J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas xx, 3746.
21.Landis, JR & Koch, GG (1977) The measurement of observer agreement for categorical data. Biometrics 33, 159174.
22.Fleiss, JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76, 378382.
23.Newcombe, RG (2001) Simultaneous comparison of sensitivity and specificity of two tests in the paired design: a straightforward graphical approach. Stat Med 20, 907915.
24.Shan, X, Xi, B, Cheng, Het al. (2010) Prevalence and behavioral risk factors of overweight and obesity among children aged 2–18 in Beijing, China. Int J Pediatr Obes 5, 383389.
25.Liu, A, Byrne, NM, Kagawa, Met al. (2011) Ethnic differences in the relationship between body mass index and percentage body fat among Asian children from different backgrounds. Br J Nutr 106, 13901397.
26.Jiang, XX, Hardy, LL, Baur, LAet al. (2014) High prevalence of overweight and obesity among inner city Chinese children in Shanghai, 2011. Ann Hum Biol 41, 469472.
27.Mendoza, PP, Valdes, J & Ortiz-Hernandez, L (2015) Accuracy of body mass index for age to diagnose obesity in Mexican schoolchildren. Nutr Hosp 31, 26682675.
28.Gordon-Larsen, P, Wang, H & Popkin, BM (2014) Overweight dynamics in Chinese children and adults. Obes Rev 15, Suppl. 1, 3748.
29.Adom, T, Kengne, AP, De Villiers, Aet al. (2019) Diagnostic accuracy of body mass index in defining childhood obesity: analysis of cross-sectional data from Ghanaian children. Int J Environ Res Public Health. Published online: 19 December 2019. doi: 10.3390/ijerph17010036.
30.Deurenberg-Yap, M, Schmidt, G, van Staveren, WAet al. (2000) The paradox of low body mass index and high body fat percentage among Chinese, Malays and Indians in Singapore. Int J Obes Relat Metab Disord 24, 10111017.
31.Neovius, MG, Linne, YM, Barkeling, BSet al. (2004) Sensitivity and specificity of classification systems for fatness in adolescents. Am J Clin Nutr 80, 597603.
32.Li, S, Zhang, M, Yang, Set al. (2005) Age- and sex-specific body composition of Chinese children. Acta Paediatr 94, 11391142.
33.Gaskin, PS & Walker, SP (2003) Obesity in a cohort of black Jamaican children as estimated by BMI and other indices of adiposity. Eur J Clin Nutr 57, 420426.
34.Wickramasinghe, VP, Cleghorn, GJ, Edmiston, KAet al. (2005) Validity of BMI as a measure of obesity in Australian white Caucasian and Australian Sri Lankan children. Ann Hum Biol 32, 6071.
35.Song, Y, Wang, HJ, Dong, Bet al. (2016) 25-year trends in gender disparity for obesity and overweight by using WHO and IOTF definitions among Chinese school-aged children: a multiple cross-sectional study. BMJ Open. Published online: 22 September 2016. doi: 10.1136/bmjopen-2016-011904.
36.McCarthy, HD, Ellis, SM & Cole, TJ (2003) Central overweight and obesity in British youth aged 11–16 years: cross sectional surveys of waist circumference. BMJ 326, 624.
37.Wells, JC, Coward, WA, Cole, TJet al. (2002) The contribution of fat and fat-free tissue to body mass index in contemporary children and the reference child. Int J Obes Relat Metab Disord 26, 13231328.
38.Ruxton, CH, Reilly, JJ & Kirk, TR (1999) Body composition of healthy 7-and 8-year-old children and a comparison with the ‘reference child’. Int J Obes Relat Metab Disord 23, 12761281.
39.Taylor, RW, Grant, AM, Williams, SMet al. (2010) Sex differences in regional body fat distribution from pre- to postpuberty. Obesity (Silver Spring) 18, 14101416.
40.Zhang, J, Li, X, Hawley, Net al. (2018) Trends in the prevalence of overweight and obesity among Chinese school-age children and adolescents from 2010 to 2015. Child Obes 14, 182188.
41.Hung, S, Chen, C, Guo, Fet al. (2017) Combine body mass index and body fat percentage measures to improve the accuracy of obesity screening in young adults. Obes Res Clin Pract 11, 1118.
42.Pietrobelli, A, Andreoli, A, Cervelli, Vet al. (2003) Predicting fat-free mass in children using bioimpedance analysis. Acta Diabetol 40, Suppl. 1, S212S215.
43.Tyrrell, VJ, Richards, G, Hofman, Pet al. (2001) Foot-to-foot bioelectrical impedance analysis: a valuable tool for the measurement of body composition in children. Int J Obes Relat Metab Disord 25, 273278.
44.Sagar, R & Gupta, T (2018) Psychological aspects of obesity in children and adolescents. Indian J Pediatr 85, 554559.

Keywords

Related content

Powered by UNSILO

Comparison of different BMI cut-offs to screen for child and adolescent obesity in urban China

  • Kun Qian (a1), Linglin Tan (a2), Shijian Li (a3), Ziang Li (a1), Feng Yu (a2), Huigang Liang (a4), Sihan Gao (a5), Xiaofan Ren (a1), Jing Zhang (a1) and Zhiruo Zhang (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.