Skip to main content Accessibility help
×
Home

Clustering of adherence to personalised dietary recommendations and changes in healthy eating index within the Food4Me study

  • Katherine M Livingstone (a1), Carlos Celis-Morales (a1), Jose Lara (a1), Clara Woolhead (a2), Clare B O’Donovan (a2), Hannah Forster (a2), Cyril FM Marsaux (a3), Anna L Macready (a4), Rosalind Fallaize (a4), Santiago Navas-Carretero (a5) (a6), Rodrigo San-Cristobal (a6), Silvia Kolossa (a7), Lydia Tsirigoti (a8), Christina P Lambrinou (a8), George Moschonis (a8), Agnieszka Surwiłło (a9), Christian A Drevon (a10), Yannis Manios (a8), Iwona Traczyk (a9), Eileen R Gibney (a2), Lorraine Brennan (a2), Marianne C Walsh (a2), Julie A Lovegrove (a4), J Alfredo Martinez (a6), Wim HM Saris (a3), Hannelore Daniel (a7), Mike Gibney (a2) and John C Mathers (a1)...
  • Please note a correction has been issued for this article.

Abstract

Objective

To characterise clusters of individuals based on adherence to dietary recommendations and to determine whether changes in Healthy Eating Index (HEI) scores in response to a personalised nutrition (PN) intervention varied between clusters.

Design

Food4Me study participants were clustered according to whether their baseline dietary intakes met European dietary recommendations. Changes in HEI scores between baseline and month 6 were compared between clusters and stratified by whether individuals received generalised or PN advice.

Setting

Pan-European, Internet-based, 6-month randomised controlled trial.

Subjects

Adults aged 18–79 years (n 1480).

Results

Individuals in cluster 1 (C1) met all recommended intakes except for red meat, those in cluster 2 (C2) met two recommendations, and those in cluster 3 (C3) and cluster 4 (C4) met one recommendation each. C1 had higher intakes of white fish, beans and lentils and low-fat dairy products and lower percentage energy intake from SFA (P<0·05). C2 consumed less chips and pizza and fried foods than C3 and C4 (P<0·05). C1 were lighter, had lower BMI and waist circumference than C3 and were more physically active than C4 (P<0·05). More individuals in C4 were smokers and wanted to lose weight than in C1 (P<0·05). Individuals who received PN advice in C4 reported greater improvements in HEI compared with C3 and C1 (P<0·05).

Conclusions

The cluster where the fewest recommendations were met (C4) reported greater improvements in HEI following a 6-month trial of PN whereas there was no difference between clusters for those randomised to the Control, non-personalised dietary intervention.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Clustering of adherence to personalised dietary recommendations and changes in healthy eating index within the Food4Me study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Clustering of adherence to personalised dietary recommendations and changes in healthy eating index within the Food4Me study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Clustering of adherence to personalised dietary recommendations and changes in healthy eating index within the Food4Me study
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Email john.mathers@newcastle.ac.uk

References

Hide All
1. Ng, M, Fleming, T, Robinson, M et al. (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766781.
2. Hill, JO, Wyatt, HR & Peters, JC (2012) Energy balance and obesity. Circulation 126, 126132.
3. NHS Choices (2015) Live Well – Healthy living for everyone. http://www.nhs.uk/Livewell/Pages/Livewellhub.aspx (accessed March 2015).
4. Hood, L & Friend, SH (2011) Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol 8, 184187.
5. Nielsen, DE & El-Sohemy, A (2014) Disclosure of genetic information and change in dietary intake: a randomized controlled trial. PLoS ONE 9, e112665.
6. Berrigan, D, Dodd, K, Troiano, RP et al. (2003) Patterns of health behavior in US adults. Prev Med 36, 615623.
7. Leech, R, McNaughton, S & Timperio, A (2014) The clustering of diet, physical activity and sedentary behavior in children and adolescents: a review. Int J Behav Nutr Phys Act 11, 4.
8. Newby, PK, Muller, D, Hallfrisch, J et al. (2003) Dietary patterns and changes in body mass index and waist circumference in adults. Am J Clin Nutr 77, 14171425.
9. Moore, L, Singer, M, Bradlee, ML et al. (2015) Adolescent dietary intakes predict cardiometabolic risk clustering. Eur J Nutr 55, 461468.
10. Khaw, K-T, Wareham, N, Bingham, S et al. (2008) Combined impact of health behaviours and mortality in men and women: the EPIC-Norfolk Prospective Population Study. PLoS Med 5, e12.
11. van Dam, RM, Li, T, Spiegelman, D et al. (2008) Combined impact of lifestyle factors on mortality: prospective cohort study in US women. BMJ 337, a1440.
12. Kesse-Guyot, E, Castetbon, K, Estaquio, C et al. (2009) Association between the French Nutritional Guideline-based score and 6-year anthropometric changes in a French middle-aged adult cohort. Am J Epidemiol 170, 757765.
13. Chiuve, SE, Fung, TT, Rexrode, KM et al. (2011) Adherence to a low-risk, healthy lifestyle and risk of sudden cardiac death among women. JAMA 306, 6269.
14. Zamora, D, Gordon-Larsen, P, He, K et al. (2011) Are the 2005 dietary guidelines for Americans associated with reduced risk of type 2 diabetes and cardiometabolic risk factors? Twenty-year findings from the CARDIA study. Diabetes Care 34, 11831185.
15. Livingstone, KM, Celis-Morales, C, Navas-Carretero, S et al. (2016) Effect of an Internet-based, personalized nutrition randomized trial on dietary changes associated with the Mediterranean diet: the Food4Me Study. Am J Clin Nutr (Epublication ahead of print version).
16. Food4Me (2016) An integrated analysis of opportunities and challenges for personalised nutrition. http://www.food4me.org/ (accessed February 2016).
17. Celis-Morales, C, Livingstone, KM, Marsaux, CFM et al. (2015) Design and baseline characteristics of the Food4Me study: a web-based randomised controlled trial of personalised nutrition in seven European countries. Genes Nutr 10, 450.
18. Livingstone, KM, Celis-Morales, C, Navas-Carretero, S et al. (2016) Profile of European adults interested in internet-based personalised nutrition: the Food4Me study. Eur J Nutr 55, 759769.
19. Forster, H, Fallaize, R, Gallagher, C et al. (2014) Online dietary intake estimation: the Food4Me food frequency questionnaire. J Med Internet Res 16, e150.
20. Fallaize, R, Forster, H, Macready, AL et al. (2014) Online dietary intake estimation: reproducibility and validity of the Food4Me food frequency questionnaire against a 4-day weighed food record. J Med Internet Res 16, e190.
21. Food Standards Agency (2002) McCance and Widdowson’s The Composition of Foods, sixth summary edition ed. Cambridge: Royal Society of Chemistry.
22. Institute of Medicine (2005) Dietary Reference Intakes for Energy, Carbohydrate, Fibre, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. http://www.nap.edu/openbook.php?isbn=0309085373 (accessed March 2015).
23. Institute of Medicine (2011) Dietary Reference Intakes Tables and Applications. http://www.iom.edu/Activities/Nutrition/SummaryDRIs/DRI-Tables.aspx (accessed March 2015).
24. World Health Organization (2007) Protein and Amino Acid Requirements in Human Nutrition. Report of a Joint WHO/FAO/UNU Expert Consultation. WHO Technical Report Series no. 935. Geneva: WHO.
25. Food and Agriculture Organization of the United Nations (2010) Fats and fatty acids in human nutrition. Report of an expert consultation. http://www.who.int/nutrition/publications/nutrientrequirements/fatsandfattyacids_humannutrition/en/ (accessed March 2016).
26. Guenther, PM, Casavale, KO, Reedy, J et al. (2013) Update of the Healthy Eating Index: HEI-2010. J Acad Nutr Diet 113, 569580.
27. Celis-Morales, C, Livingstone, KM, Woolhead, C et al. (2015) How reliable is internet-based self-reported identity, socio-demographic and obesity measures in European adults? Genes Nutr 73, 476.
28. European Commission (2015) European skills, competences, qualifications and occupations. https://ec.europa.eu/esco/web/guest/hierarchybrowser/-/browser/Occupation (accessed April 2015).
29. European Commission (2015) Mean annual earnings by sex, age and occupation. http://ec.europa.eu/eurostat/web/products-datasets/-/earn_ses_agt28 (accessed March 2015).
30. Chiu, T, Fang, D, Chen, J et al. (2001) A robust and scalable clustering algorithm for mixed type attributes in large database environment. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 263–268. San Francisco, CA: ACM.
31. Ocké, MC (2013) Evaluation of methodologies for assessing the overall diet: dietary quality scores and dietary pattern analysis. Proc Nutr Soc 72, 191199.
32. Kant, AK (2004) Dietary patterns and health outcomes. J Am Diet Assoc 104, 615635.
33. Ma, Y, Bertone, ER, Stanek, EJ et al. (2003) Association between eating patterns and obesity in a free-living US adult population. Am J Epidemiol 158, 8592.
34. Wirt, A & Collins, CE (2009) Diet quality – what is it and does it matter? Public Health Nutr 12, 24732492.
35. US Department of Agriculture (2014) A series of systematic reviews on the relationship between dietary patterns and health outcomes. http://www.nel.gov/vault/2440/web/files/DietaryPatterns/DPRptFullFinal.pdf (accessed July 2016).
36. Gao, SK, Beresford, SAA, Frank, LL et al. (2008) Modifications to the Healthy Eating Index and its ability to predict obesity: the Multi-Ethnic Study of Atherosclerosis. Am J Clin Nutr 88, 6469.
37. Jacobs, DR, Sluik, D, Rokling-Andersen, MH et al. (2009) Association of 1-y changes in diet pattern with cardiovascular disease risk factors and adipokines: results from the 1-y randomized Oslo Diet and Exercise Study. Am J Clin Nutr 89, 509517.
38. Cheng, G, Gerlach, S, Libuda, L et al. (2010) Diet quality in childhood is prospectively associated with the timing of puberty but not with body composition at puberty onset. J Nutr 140, 95102.
39. Park, S-Y, Murphy, SP, Wilkens, LR et al. (2005) Dietary patterns using the food guide pyramid groups are associated with sociodemographic and lifestyle factors: the Multiethnic Cohort Study. J Nutr 135, 843849.
40. Di Cesare, M, Khang, Y-H, Asaria, P et al. (2013) Inequalities in non-communicable diseases and effective responses. Lancet 381, 585597.
41. Celis-Morales, C, Lara, J & Mathers, JC (2014) Personalising nutritional guidance for more effective behaviour change. Proc Nutr Soc 74, 130138.
42. Ferguson, L (editor) (2013) Nutrigenomics and Nutrigenetics in Functional Foods and Personalized Nutrition. Boca Raton, FL: CRC Press.
43. Pursey, K, Burrows, LT, Stanwell, P et al. (2014) How accurate is web-based self-reported height, weight, and body mass index in young adults? J Med Internet Res 16, e4.
44. Macdiarmid, J & Blundell, J (1998) Assessing dietary intake: who, what and why of under-reporting. Nutr Res Rev 11, 231253.

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Livingstone et al. supplementary material
Tables S1-S6

 Word (33 KB)
33 KB

Clustering of adherence to personalised dietary recommendations and changes in healthy eating index within the Food4Me study

  • Katherine M Livingstone (a1), Carlos Celis-Morales (a1), Jose Lara (a1), Clara Woolhead (a2), Clare B O’Donovan (a2), Hannah Forster (a2), Cyril FM Marsaux (a3), Anna L Macready (a4), Rosalind Fallaize (a4), Santiago Navas-Carretero (a5) (a6), Rodrigo San-Cristobal (a6), Silvia Kolossa (a7), Lydia Tsirigoti (a8), Christina P Lambrinou (a8), George Moschonis (a8), Agnieszka Surwiłło (a9), Christian A Drevon (a10), Yannis Manios (a8), Iwona Traczyk (a9), Eileen R Gibney (a2), Lorraine Brennan (a2), Marianne C Walsh (a2), Julie A Lovegrove (a4), J Alfredo Martinez (a6), Wim HM Saris (a3), Hannelore Daniel (a7), Mike Gibney (a2) and John C Mathers (a1)...
  • Please note a correction has been issued for this article.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

A correction has been issued for this article: