Skip to main content Accessibility help

Cardiovascular risk factors in relation to dietary patterns in 50-year-old men and women: a feasibility study of a short FFQ

  • Christina E Persson (a1), Elisabet Rothenberg (a2), Per-Olof Hansson (a1), Catharina Welin (a1) and Elisabeth Strandhagen (a3)...



We aimed to assess the feasibility of a simple new fifteen-item FFQ as a tool for screening risk of poor dietary patterns in a healthy middle-aged population and to investigate how the results of the FFQ correlated with cardiovascular risk factors and socio-economic factors.


A randomized population-based cross-sectional study. Metabolic measurements for cardiovascular risk factors and information about lifestyle were collected. A fifteen-item FFQ was created to obtain information about dietary patterns. From the FFQ, a healthy eating index was created with three dietary groups: good, average and poor. Multivariate logistic regression was used to assess relationships between dietary patterns and cardiovascular risk factors.




Men and women aged 50 years and living in Gothenburg, Sweden.


In total, 521 middle-aged adults (257 men, 264 women) were examined. With good dietary pattern as the reference, there was a gradient association of having obesity, hypertension and high serum TAG in those with average and poor dietary patterns. After adjustment for education and lifestyle factors, individuals with a poor dietary pattern still had significantly higher risk (OR; 95 % CI) of obesity (2·33; 1·10, 4·94), hypertension (2·73; 1·44, 5·20) and high serum TAG (2·62; 1·33, 5·14) compared with those with a good dietary pattern.


Baseline data collected by a short FFQ can predict cardiovascular risk factors in middle-aged Swedish men and women. The FFQ could be a useful tool in health-care settings, when screening for risk of poor dietary patterns.


Corresponding author

*Corresponding author: Email


Hide All
1. World Health Organization (2014) European Food and Nutrition Action Plan 2015–2020. Copenhagen: WHO Regional Office for Europe.
2. Nordic Couincil of Ministers (2014) Nordic Nutrition Recommendations 2012: Integrating Nutrition and Physical Activity. Copenhagen: Nordic Council of Ministers.
3. World Health Organization (2015) World Report on Ageing and Health. Geneva: WHO.
4. World Cancer Research Fund/American Institute for Cancer Research (2007) Food, Nutrition, Physical Activity and the Prevention of Cancer: A Global Perspective. Washington, DC: AICR.
5. Robertson, A, Tirado, C, Lobstein, T et al. (2004) Food and Health in Europe: A New Basis for Action. WHO Regional Publications, European Series no. 96. Copenhagen: WHO Regional Office for Europe.
6. World Health Organization ( 2011) Global Status Report on Noncommunicable Diseases 2010 . Description of the Global Burden of NCDs, Their Risk Factors and Determinants. Geneva: WHO.
7. Yeh, RW, Sidney, S, Chandra, M et al. (2010) Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med 362, 21552165.
8. Kesteloot, H, Sans, S & Kromhout, D (2006) Dynamics of cardiovascular and all-cause mortality in Western and Eastern Europe between 1970 and 2000. Eur Heart J 27, 107113.
9. Yusuf, S, Rangarajan, S, Teo, K et al. (2014) Cardiovascular risk and events in 17 low-, middle-, and high-income countries. N Engl J Med 371, 818827.
10. The Public Health Agency of Sweden (2016) Public Health in Sweden 2016 (in Swedish). (accessed April 2017).
11. Beaglehole, R, Bonita, R, Horton, R et al. (2011) Priority actions for the non-communicable disease crisis. Lancet 377, 14381447.
12. World Health Organization (2012) Action Plan for Implementation of the European Strategy for the Prevention and Control of Noncommunicable Diseases 2012−2016 . Copenhagen: WHO Regional Office for Europe.
13. Björck, L, Capewell, S, O’Flaherty, M et al. (2015) Decline in coronary mortality in Sweden between 1986 and 2002: comparing contributions from primary and secondary prevention. PLoS One 5, 10.
14. World Health Organization (2015) The European Health Report 2015Targets and Beyond – Reaching New Frontiers in Evidence. Copenhagen: WHO Regional Office for Europe.
15. Frost, L, Hune, LJ & Vestergaard, P (2005) Overweight and obesity as risk factors for atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study. Am J Med 118, 489495.
16. Rosengren, A, Aberg, M, Robertson, J et al. (2016) Body weight in adolescence and long-term risk of early heart failure in adulthood among men in Sweden. Eur Heart J 38, 19261933.
17. Ng, M, Fleming, T, Robinson, M et al. (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766781.
18. Matthiessen, J, Andersen, LF, Barbieri, HE et al. (2016) The Nordic Monitoring System 2011–2014. Status and Development of Diet, Physical Activity, Smoking, Alcohol and Overweight. Copenhagen: Nordic Council of Ministers.
19. Zhong, Y, Rosengren, A, Fu, M et al. (2017) Secular changes in cardiovascular risk factors in Swedish 50-year-old men over a 50-year period: the study of men born in 1913, 1923, 1933, 1943, 1953 and 1963. Eur J Prev Cardiol 24, 612620.
20. Johansson, S, Wilhelmsen, L, Welin, C et al. (2010) Obesity, smoking and secular trends in cardiovascular risk factors in middle-aged women: data from population studies in Goteborg from 1980 to 2003. J Intern Med 268, 594603.
21. Barasa, A, Schaufelberger, M, Lappas, G et al. (2014) Heart failure in young adults: 20-year trends in hospitalization, aetiology, and case fatality in Sweden. Eur Heart J 35, 2532.
22. Giang, KW, Mandalenakis, Z, Nielsen, S et al. (2017) Long-term trends in the prevalence of patients hospitalized with ischemic stroke from 1995 to 2010 in Sweden. PLoS One 12, e0179658.
23. Berg, CM, Lappas, G, Strandhagen, E et al. (2008) Food patterns and cardiovascular disease risk factors: the Swedish INTERGENE research program. Am J Clin Nutr 88, 289297.
24. Trichopoulou, A, Orfanos, P, Norat, T et al. (2005) Modified Mediterranean diet and survival: EPIC-elderly prospective cohort study. BMJ 330, 991.
25. Marventano, S, Grosso, G, Marranzano, M et al. (2015) A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: are individual components equal? Crit Rev Food Sci Nutr 57, 32183232.
26. Dinu, M, Pagliai, G, Casini, A et al. (2018) Mediterranean diet and multiple health outcomes: an umbrella review of meta-analyses of observational studies and randomised trials. Eur J Clin Nutr 17, 3043.
27. Winkvist, A, Klingberg, S, Nilsson, LM et al. (2017) Longitudinal 10-year changes in dietary intake and associations with cardio-metabolic risk factors in the Northern Sweden Health and Disease Study. Nutr J 16, 20.
28. National Board of Health and Welfare (2011) National Guidelines for Methods of Preventing Disease (in Swedish). Västerås: Edita Västra Aros.
29. Saltin, B & Grimby, G (1968) Physiological analysis of middle-aged and old former athletes. Comparison with still active athletes of the same ages. Circulation 38, 11041115.
30. Rosengren, A, Hawken, S, Ounpuu, S et al., INTERHEART Investigators (2004) Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case–control study. Lancet 364, 953962.
31. Wyatt, HR, Grunwald, GK, Mosca, CL et al. (2002) Long-term weight loss and breakfast in subjects in the National Weight Control Registry. Obes Res 10, 7882.
32. Wing, RR & Hill, JO (2001) Successful weight loss maintenance. Annu Rev Nutr 21, 323341.
33. Dehghan, M, Mente, A, Zhang, X et al. (2017) Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet 390, 20502062.
34. Miller, V, Mente, A, Dehghan, M et al. (2017) Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study. Lancet 390, 20372049.
35. Nyholm, M, Gullberg, B & Merlo, J (2007) The validity of obesity based on self-reported weight and height: Implications for population studies. Obesity (Silver Spring) 15, 197208.
36. Millen, BE, Quatromoni, PA, Nam, BH et al. (2002) Dietary patterns and the odds of carotid atherosclerosis in women: the Framingham Nutrition Studies. Prev Med 35, 540547.
37. Gay, HC, Rao, SG, Vaccarino, V et al. (2016) Effects of different dietary interventions on blood pressure: systematic review and meta-analysis of randomized controlled trials. Hypertension 67, 733739.
38. Tolonen, H, Dobson, A & Kulathinal, S (2005) Effect on trend estimates of the difference between survey respondents and non-respondents: results from 27 populations in the WHO MONICA Project. Eur J Epidemiol 20, 887898.
39. Strandhagen, E, Berg, C, Lissner, L et al. (2010) Selection bias in a population survey with registry linkage: potential effect on socioeconomic gradient in cardiovascular risk. Eur J Epidemiol 25, 163172.
40. National Board of Health and Welfare (2015) Disease Prevention in the Swedish Healthcare System: Health Situation, National Guidelines and Implementation. Västerås: Edita Västra Aros.


Type Description Title
Supplementary materials

Persson et al. supplementary material
Persson et al. supplementary material 1

 Word (102 KB)
102 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed