Skip to main content Accessibility help
×
Home

Associations between home and school neighbourhood food environments and adolescents’ fast-food and sugar-sweetened beverage intakes: findings from the Olympic Regeneration in East London (ORiEL) Study

  • Martine Shareck (a1), Daniel Lewis (a1), Neil R Smith (a2), Christelle Clary (a1) and Steven Cummins (a1)...

Abstract

Objective

To examine associations between availability of fast-food restaurants and convenience stores in the home and school neighbourhoods, considered separately and together, and adolescents’ fast-food and sugar-sweetened beverage (SSB) intakes.

Design

Cross-sectional observational study.

Setting

East London, UK.

Subjects

Adolescents (n 3089; aged 13–15 years) from the Olympic Regeneration in East London (ORiEL) Study self-reported their weekly frequency of fast-food and SSB consumption. We used food business addresses collected from local authority registers to derive absolute (counts) and relative (proportions) exposure measures to fast-food restaurants and convenience stores within 800 m from home, school, and home and school combined. Associations between absolute and relative measures of the food environment and fast-food and SSB intakes were assessed using Poisson regression models with robust standard errors.

Results

Absolute exposure to fast-food restaurants or convenience stores in the home, school, or combined home and school neighbourhoods was not associated with any of the outcomes. High SSB intake was associated with relative exposure to convenience stores in the residential neighbourhood (risk ratio=1·45; 95 % CI 1·08, 1·96) and in the home and school neighbourhoods combined (risk ratio=1·69; 95 % CI 1·11, 2·57).

Conclusions

We found no evidence of an association between absolute exposure to fast-food restaurants and convenience stores around home and school and adolescents’ fast-food and SSB intakes. Relative exposure, which measures the local diversity of the neighbourhood food environment, was positively associated with SSB intake. Relative measures of the food environment may better capture the environmental risks for poor diet than absolute measures.

Copyright

Corresponding author

*Corresponding author: Email martine.shareck@utoronto.ca

Footnotes

Hide All

Current address: Division of Social and Behavioural Health Sciences, Dalla Lana School of Public Health, University of Toronto, 155 College Street, Toronto M5T 3M7, Canada.

Footnotes

References

Hide All
1. World Health Organization (2012) Population-Based Approaches to Childhood Obesity Prevention. Geneva: WHO.
2. Northstone, K, Smith, AD, Cribb, VL et al. (2014) Dietary patterns in UK adolescents obtained from a dual-source FFQ and their associations with socio-economic position, nutrient intake and modes of eating. Public Health Nutr 17, 14761485.
3. Lachat, C, Nago, E, Verstraeten, R et al. (2012) Eating out of home and its association with dietary intake: a systematic review of the evidence. Obes Rev 13, 329346.
4. Braithwaite, I, Stewart, AW, Hancox, RJ et al. (2014) Fast-food consumption and body mass index in children and adolescents: an international cross-sectional study. BMJ Open 4, e005813.
5. Bowman, SA, Gortmaker, SL, Ebbeling, CB et al. (2004) Effects of fast-food consumption on energy intake and diet quality among children in a national household survey. Pediatrics 113, 112118.
6. Public Health England & Food Standards Agency (2014) National Diet and Nutrition Survey Results from Years 1, 2, 3 and 4 (Combined) of the Rolling Programme (2008/2009 – 2011/2012). London: Public Health England.
7. Tedstone, A, Targett, V, Allen, R et al. (2015) Sugar Reduction: The Evidence for Action. London: Public Health England.
8. Craigie, AM, Lake, AA, Kelly, SA et al. (2011) Tracking of obesity-related behaviours from childhood to adulthood: a systematic review. Maturitas 70, 266284.
9. Mikkila, V, Rasanen, L, Raitakari, OT et al. (2005) Consistent dietary patterns identified from childhood to adulthood: the cardiovascular risk in Young Finns Study. Br J Nutr 93, 923931.
10. Mazarello Paes, V, Hesketh, K, O’Malley, C et al. (2015) Determinants of sugar-sweetened beverage consumption in young children: a systematic review. Obes Rev 16, 903913.
11. Glanz, K (2009) Measuring food environments: a historical perspective. Am J Prev Med 36, Suppl. 4, S93S98.
12. Engler-Stringer, R, Le, H, Gerrard, A et al. (2014) The community and consumer food environment and children’s diet: a systematic review. BMC Public Health 14, 522.
13. Caspi, CE, Sorensen, G, Subramanian, SV et al. (2012) The local food environment and diet: a systematic review. Health Place 18, 11721187.
14. Black, C, Moon, G & Baird, J (2014) Dietary inequalities: what is the evidence for the effect of the neighbourhood food environment? Health Place 27, 229242.
15. Fitzpatrick, C, Datta, GD, Henderson, M et al. (2017) School food environments associated with adiposity in Canadian children. Int J Obes (Lobd) 41, 10051010.
16. Williams, J, Scarborough, P, Matthews, A et al. (2014) A systematic review of the influence of the retail food environment around schools on obesity-related outcomes. Obes Rev 15, 359374.
17. He, M, Tucker, P, Gilliland, J et al. (2012) The influence of local food environments on adolescents’ food purchasing behaviors. Int J Environ Res Public Health 9, 14581471.
18. Shier, V, Nicosia, N & Datar, A (2016) Neighborhood and home food environment and children’s diet and obesity: evidence from military personnel’s installation assignment. Soc Sci Med 158, 122131.
19. Sadler, RC, Clark, AF, Wilk, P et al. (2016) Using GPS and activity tracking to reveal the influence of adolescents’ food environment exposure on junk food purchasing. Can J Public Health 107, Suppl. 1, 5346.
20. Pearce, A, Kirk, C, Cummins, S et al. (2009) Gaining children’s perspectives: a multiple method approach to explore environmental influences on healthy eating and physical activity. Health Place 15, 614621.
21. Wansink, B (2004) Environmental factors that increase the food intake and consumption volume of unknowing consumers. Annu Rev Nutr 24, 455479.
22. Drewnowski, A (1989) Sensory preferences for fat and sugar in adolescence and adult life. Ann N Y Acad Sci 561, 243250.
23. Khan, T, Powell, LM & Wada, R (2012) Fast food consumption and food prices: evidence from panel data on 5th and 8th grade children. J Obes 2012, 857697.
24. Clary, C, Matthews, SA & Kestens, Y (2017) Between exposure, access and use: reconsidering foodscape influences on dietary behaviours. Health Place 44, 17.
25. Sallis, JF & Glanz, K (2009) Physical activity and food environments: solutions to the obesity epidemic. Milbank Q 87, 123154.
26. Timperio, AF, Ball, K, Roberts, R et al. (2009) Children’s takeaway and fast-food intakes: associations with the neighbourhood food environment. Public Health Nutr 12, 19601964.
27. Fraser, LK, Clarke, GP, Cade, JE et al. (2012) Fast food and obesity: a spatial analysis in a large United Kingdom population of children aged 13–15. Am J Prev Med 42, e77e85.
28. Longacre, MR, Drake, KM, MacKenzie, TA et al. (2012) Fast-food environments and family fast-food intake in nonmetropolitan areas. Am J Prev Med 42, 579587.
29. Jennings, A, Welch, A, Jones, AP et al. (2011) Local food outlets, weight status, and dietary intake: associations in children aged 9–10 years. Am J Prev Med 40, 405410.
30. Laska, MN, Hearst, MO, Forsyth, A et al. (2010) Neighbourhood food environments: are they associated with adolescent dietary intake, food purchases and weight status? Public Health Nutr 13, 17571763.
31. Davis, B & Carpenter, C (2009) Proximity of fast-food restaurants to schools and adolescent obesity. Am J Public Health 99, 505510.
32. Van Hulst, A, Barnett, TA, Gauvin, L et al. (2012) Associations between children’s diets and features of their residential and school neighbourhood food environments. Can J Public Health 103, 9 Suppl. 3, eS48eS54.
33. Skidmore, P, Welch, A, van Sluijs, E et al. (2010) Impact of neighbourhood food environment on food consumption in children aged 9–10 years in the UK SPEEDY (Sport, Physical Activity and Eating behaviour: Environmental Determinants in Young people) study. Public Health Nutr 13, 10221030.
34. Svastisalee, C, Pagh Pedersen, T, Schipperijn, J et al. (2016) Fast-food intake and perceived and objective measures of the local fast-food environment in adolescents. Public Health Nutr 19, 446455.
35. Buck, C, Bornhorst, C, Pohlabeln, H et al. (2013) Clustering of unhealthy food around German schools and its influence on dietary behavior in school children: a pilot study. Int J Behav Nutr Phys Act 10, 65.
36. An, RP & Sturm, R (2012) School and residential neighborhood food environment and diet among California youth. Am J Prev Med 42, 129135.
37. van der Horst, K, Timperio, A, Crawford, D et al. (2008) The school food environment associations with adolescent soft drink and snack consumption. Am J Prev Med 35, 217223.
38. Cutumisu, N, Traore, I, Paquette, MC et al. (2017) Association between junk food consumption and fast-food outlet access near school among Quebec secondary-school children: findings from the Quebec Health Survey of High School Students (QHSHSS) 2010–11. Public Health Nutr 20, 927937.
39. Barrett, M, Crozier, S, Lewis, D et al. (2017) Greater access to healthy food outlets in the home and school environment is associated with better dietary quality in young children. Public Health Nutr 20, 33163325.
40. Clary, C, Lewis, DJ, Flint, E et al. (2016) The local food environment and fruit and vegetable intake: a geographically weighted regression approach in the ORiEL Study. Am J Epidemiol 184, 837846.
41. Clary, CM, Ramos, Y, Shareck, M et al. (2015) Should we use absolute or relative measures when assessing foodscape exposure in relation to fruit and vegetable intake? Evidence from a wide-scale Canadian study. Prev Med 71, 8387.
42. Mason, KE, Bentley, RJ & Kavanagh, AM (2013) Fruit and vegetable purchasing and the relative density of healthy and unhealthy food stores: evidence from an Australian multilevel study. J Epidemiol Community Health 67, 231236.
43. Smith, NR, Clark, C, Fahy, AE et al. (2012) The Olympic Regeneration in East London (ORiEL) study: protocol for a prospective controlled quasi-experiment to evaluate the impact of urban regeneration on young people and their families. BMJ Open 2, e001840.
44. Wardle, J, Sutton, S & Jarvis, M (1998) HABITS – The Health and Behaviours in Teenagers Study. London: London Health Behaviour Unit, Department of Epidemiology and Public Health, University College London.
45. Pereira, MA, Kartashov, AI, Ebbeling, CB et al. (2005) Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet 365, 3642.
46. Lake, AA, Burgoine, T, Greenhalgh, F et al. (2010) The foodscape: classification and field validation of secondary data sources. Health Place 16, 666673.
47. Ordnance Survey (2011) OS MasterMap Address Layer 2. https://www.ordnancesurvey.co.uk/docs/technical-specifications/os-master-map-address-layer-technical-specification.pdf (accessed August 2014).
48. Bridle-Fitzpatrick, S (2015) Food deserts or food swamps?: a mixed-methods study of local food environments in a Mexican city. Soc Sci Med 142, 202213.
49. Lamb, KE & White, SR (2015) Categorisation of built environment characteristics: the trouble with tertiles. Int J Behav Nutr Phys Act 12, 19.
50. Carpenter, JR & Kenward, MG (2013) Multiple Imputation and Its Application, 1st ed. Chichester: John Wiley & Sons.
51. StataCorp (2017) Stata Multiple Imputation Reference Manual – Release 15. College Station, TX: Stata Press.
52. McNutt, LA, Wu, C, Xue, X et al. (2003) Estimating the relative risk in cohort studies and clinical trials of common outcomes. Am J Epidemiol 157, 940943.
53. Sullivan, TR, Lee, KJ, Ryan, P et al. (2017) Multiple imputation for handling missing outcome data when estimating the relative risk. BMC Med Res Methodol 17, 134.
54. Huang, JG, Lu, XX & Sellers, JM (2007) A global comparative analysis of urban form: applying spatial metrics and remote sensing. Landscape Urban Plan 82, 184197.
55. Babey, S, Wolstein, J & Diamant, AL (2011) Food Environments Near Home and School Related to Consumption of Soda and Fast Food. Los Angeles, CA: UCLA Center for Health Policy Research.
56. Burgoine, T, Forouhi, NG, Griffin, SJ et al. (2014) Associations between exposure to takeaway food outlets, takeaway food consumption, and body weight in Cambridgeshire, UK: population based, cross sectional study. BMJ 348, g1464.
57. Penchansky, R & Thomas, JW (1981) The concept of access: definition and relationship to consumer satisfaction. Med Care 19, 127140.
58. Cowburn, G, Matthews, A, Doherty, A et al. (2016) Exploring the opportunities for food and drink purchasing and consumption by teenagers during their journeys between home and school: a feasibility study using a novel method. Public Health Nutr 19, 93103.
59. Paquet, C, Dubé, L, Gauvin, L et al. (2010) Sense of mastery and metabolic risk: moderating role of the local fast-food environment. Psychosom Med 72, 324331.
60. Chaix, B, Merlo, J, Evans, D et al. (2009) Neighbourhoods in eco-epidemiologic research: delimiting personal exposure areas. A response to Riva, Gauvin, Apparicio and Brodeur. Soc Sci Med 69, 13061310.
61. Cummins, S & Macintyre, S (2009) Are secondary data sources on the neighbourhood food environment accurate? Case-study in Glasgow, UK. Prev Med 49, 527528.
62. Fotheringham, AS & Wong, DWS (1991) The modifiable areal unit problem in multivariate statistical-analysis. Environ Plan A 23, 10251044.
63. Stewart, T, Schipperijn, J, Snizek, B et al. (2017) Adolescent school travel: Is online mapping a practical alternative to GPS-assessed travel routes? J Transport Health 5, 113122.
64. Harrison, F, Burgoine, T, Corder, K et al. (2014) How well do modelled routes to school record the environments children are exposed to? A cross-sectional comparison of GIS-modelled and GPS-measured routes to school. Int J Health Geogr 13, 5.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed