Skip to main content Accessibility help

Association of abnormal serum electrolyte levels with hypertension in a population with high salt intake

  • Di Wu (a1), Yintao Chen (a2), Haixia Guan (a1) and Yingxian Sun (a2)



The present epidemiological study aimed to evaluate the association of serum electrolyte levels with hypertension in a population with a high-salt diet.


Secondary analysis of epidemiology data from the Northeast China Rural Cardiovascular Health Study conducted in 2012–2013. Blood pressure and hypertension status were analysed for association with serum sodium, potassium, chloride, total calcium, phosphate and magnesium levels using regression models.


High-salt diet, rural China.


Adult residents in Liaoning, China.


In total 10 555 participants were included, of whom 3287 had incident hypertension (IH) and 1655 had previously diagnosed hypertension (PDH). Fifty-six per cent of participants had electrolyte disturbance. Sixty-two per cent of hypercalcaemic participants had hypertension, followed by hypokalaemia (56 %) and hypernatraemia (54 %). Only hypercalcaemia showed significant associations with both IH (OR=1·70) and PDH (OR=2·25). Highest serum calcium quartile had higher odds of IH (OR=1·58) and PDH (OR=1·64) than the lowest quartile. Serum sodium had no significant correlation with hypertension. Serum potassium had a U-shaped trend with PDH. Highest chloride quartile had lower odds of PDH than the lowest chloride quartile (OR=0·65). Highest phosphate quartile was only associated with lower odds of IH (OR=0·75), and the higher magnesium group had significantly lower odds of IH (OR=0·86) and PDH (OR=0·77).


We have shown the association of serum calcium, magnesium and chloride levels with IH and/or PDH. In the clinical setting, patients with IH may have concurrent electrolyte disturbances, such as hypercalcaemia, that may indicate other underlying aetiologies.


Corresponding author


Hide All
1. Sajadieh, A, Binici, Z, Mouridsen, MR et al. (2009) Mild hyponatremia carries a poor prognosis in community subjects. Am J Med 122, 679686.
2. Umesawa, M, Iso, H, Date, C et al. (2008) Relations between dietary sodium and potassium intakes and mortality from cardiovascular disease: the Japan Collaborative Cohort Study for Evaluation of Cancer Risks. Am J Clin Nutr 88, 195202.
3. Mohan, S, Gu, S, Parikh, A et al. (2013) Prevalence of hyponatremia and association with mortality: results from NHANES. Am J Med 126, 1127.e11137.e1.
4. Kim, M-H & Choi, M-K (2013) Seven dietary minerals (Ca, P, Mg, Fe, Zn, Cu, and Mn) and their relationship with blood pressure and blood lipids in healthy adults with self-selected diet. Biol Trace Elem Res 153, 6975.
5. Gijsbers, L, Dower, JI, Mensink, M et al. (2015) Effects of sodium and potassium supplementation on blood pressure and arterial stiffness: a fully controlled dietary intervention study. J Hum Hypertens 29, 592598.
6. He, FJ, Marciniak, M, Visagie, E et al. (2009) Effect of modest salt reduction on blood pressure, urinary albumin, and pulse wave velocity in white, black, and Asian mild hypertensives. Hypertension 54, 482488.
7. Jablonski, KL, Gates, PE, Pierce, GL et al. (2009) Low dietary sodium intake is associated with enhanced vascular endothelial function in middle-aged and older adults with elevated systolic blood pressure. Ther Adv Cardiovasc Dis 3, 347356.
8. Shi, L, Krupp, D & Remer, T (2014) Salt, fruit and vegetable consumption and blood pressure development: a longitudinal investigation in healthy children. Br J Nutr 111, 662671.
9. Li, Z, Guo, X, Zheng, L et al. (2015) Grim status of hypertension in rural China: results from Northeast China Rural Cardiovascular Health Study 2013. J Am Soc Hypertens 9, 358364.
10. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group (2013) KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl. 3, 1150.
11. Guan XR (2018) Clinical diagnostics reference values. In Diagnostics, 9th ed., pp. 631 [XH Wan and XF Liu, editors]. China: People’s Medical Publishing House Co., Ltd.
12. Expert Panel on the Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285, 24862497.
13. Yao, Y, He, L, Jin, Y et al. (2013) The relationship between serum calcium level, blood lipids, and blood pressure in hypertensive and normotensive subjects who come from a normal university in east of China. Biol Trace Elem Res 153, 3540.
14. Sabanayagam, C & Shankar, A (2011) Serum calcium levels and hypertension among US adults. J Clin Hypertens (Greenwich) 13, 716721.
15. Jorde, R, Sundsfjord, J, Fitzgerald, P et al. (1999) Serum calcium and cardiovascular risk factors and diseases: the Tromso study. Hypertension 34, 484490.
16. Kesteloot, H & Joossens, JV (1988) Relationship of serum sodium, potassium, calcium, and phosphorus with blood pressure. Belgian Interuniversity Research on Nutrition and Health. Hypertension 12, 589593.
17. Phillips, AN & Shaper, AG (1991) Serum calcium and blood pressure. J Hum Hypertens 5, 479484.
18. Rinner, MD, Spliet-van Laar, L & Kromhout, D (1989) Serum sodium, potassium, calcium and magnesium and blood pressure in a Dutch population. J Hypertens 7, 977981.
19. Behradmanesh, S & Nasri, H (2013) Association of serum calcium with level of blood pressure in type 2 diabetic patients. J Nephropathol 2, 254257.
20. Ephraim, RKD, Osakunor, DNM, Denkyira, SW et al. (2014) Serum calcium and magnesium levels in women presenting with pre-eclampsia and pregnancy-induced hypertension: a case–control study in the Cape Coast metropolis, Ghana. BMC Pregnancy Childbirth 14, 390.
21. Bera, S, Siuli, RA, Gupta, S et al. (2011) Study of serum electrolytes in pregnancy induced hypertension. J Indian Med Assoc 109, 546548.
22. Mohieldein, AH, Dokem, AA, Osman, YHM et al. (2007) Serum calcium level as a marker of pregnancy induced hypertension. Sudan J Med Sci 2, 245248.
23. Takale, LR, More, UK, Sontakke, AN et al. (2013) Serum total and free calcium in hypertension. Indian J Basic Appl Med Res 2, 716720.
24. Folsom, AR, Smith, CL, Prineas, RJ et al. (1986) Serum calcium fractions in essential hypertensive and matched normotensive subjects. Hypertension 8, 1115.
25. Strazzullo, P, Nunziata, V, Cirillo, M et al. (1983) Abnormalities of calcium metabolism in essential hypertension. Clin Sci (Lond) 65, 137141.
26. Fields, LE, Burt, VL, Cutler, JA et al. (2004) The burden of adult hypertension in the United States 1999 to 2000: a rising tide. Hypertension 44, 398404.
27. Staessen, J, Sartor, F, Roels, H et al. (1991) The association between blood pressure, calcium and other divalent cations: a population study. J Hum Hypertens 5, 485494.
28. Indumati, V, Kodliwadmath, M & Sheela, M (2011) The role of serum electrolytes in pregnancy induced hypertension. J Clin Diagnostic Res 5, 6669.
29. Jorde, R, Bonaa, KH & Sundsfjord, J (1999) Population based study on serum ionised calcium, serum parathyroid hormone, and blood pressure. The Tromso study. Eur J Endocrinol 141, 350357.
30. Vargas, CM, Obisesan, T & Gillum, RF (1998) Association of serum albumin concentration, serum ionized calcium concentration, and blood pressure in the Third National Health and Nutrition Examination Survey. J Clin Epidemiol 51, 739746.
31. Hilpert, KF, West, SG, Bagshaw, DM et al. (2009) Effects of dairy products on intracellular calcium and blood pressure in adults with essential hypertension. J Am Coll Nutr 28, 142149.
32. Kunutsor, S & Laukkanen, J (2017) Circulating active serum calcium reduces the risk of hypertension. Eur J Prev Cardiol 24, 239.
33. Weber, MA (2003) Outcomes of treating hypertension in the elderly: a short commentary on current issues. Am J Geriatr Cardiol 12, 1418.
34. Level, C, Lasseur, C, Delmas, Y et al. (2001) Determinants of arterial compliance in patients treated by hemodialysis. Clin Nephrol 56, 435444.
35. Yagi, S, Aihara, K-I, Kondo, T et al. (2014) High serum parathyroid hormone and calcium are risk factors for hypertension in Japanese patients. Endocr J 61, 727733.
36. Cappuccio, FP, Kalaitzidis, R, Duneclift, S et al. (2000) Unravelling the links between calcium excretion, salt intake, hypertension, kidney stones and bone metabolism. J Nephrol 13, 169177.
37. Wang, L, Manson, JE, Buring, JE et al. (2008) Dietary intake of dairy products, calcium, and vitamin D and the risk of hypertension in middle-aged and older women. Hypertension 51, 10731079.
38. Engberink, MF, Hendriksen, MA, Schouten, EG et al. (2009) Inverse association between dairy intake and hypertension: the Rotterdam Study. Am J Clin Nutr 89, 18771883.
39. da Silva Ferreira, T, Torres, MR & Sanjuliani, AF (2013) Dietary calcium intake is associated with adiposity, metabolic profile, inflammatory state and blood pressure, but not with erythrocyte intracellular calcium and endothelial function in healthy pre-menopausal women. Br J Nutr 110, 10791088.
40. Imdad, A, Jabeen, A & Bhutta, ZA (2011) Role of calcium supplementation during pregnancy in reducing risk of developing gestational hypertensive disorders: a meta-analysis of studies from developing countries. BMC Public Health 11, Suppl. 3, S18.
41. Wang, X, Chen, H, Ouyang, Y et al. (2014) Dietary calcium intake and mortality risk from cardiovascular disease and all causes: a meta-analysis of prospective cohort studies. BMC Med 12, 158.
42. Chung, M, Tang, AM, Fu, Z et al. (2016) Calcium intake and cardiovascular disease risk: an updated systematic review and meta-analysis. Ann Intern Med 165, 856866.
43. Richardson, BE & Baird, DD (1995) A study of milk and calcium supplement intake and subsequent preeclampsia in a cohort of pregnant women. Am J Epidemiol 141, 667673.
44. Afsar, B & Elsurer, R (2014) The relationship between magnesium and ambulatory blood pressure, augmentation index, pulse wave velocity, total peripheral resistance, and cardiac output in essential hypertensive patients. J Am Soc Hypertens 8, 2835.
45. Joosten, MM, Gansevoort, RT, Mukamal, KJ et al. (2013) Urinary magnesium excretion and risk of hypertension: the prevention of renal and vascular end-stage disease study. Hypertension 61, 11611167.
46. Yamori, Y, Sagara, M, Mizushima, S et al. (2015) An inverse association between magnesium in 24-h urine and cardiovascular risk factors in middle-aged subjects in 50 CARDIAC Study populations. Hypertens Res 38, 219225.
47. Guerrero-Romero, F & Rodríguez-Morán, M (2008) The effect of lowering blood pressure by magnesium supplementation in diabetic hypertensive adults with low serum magnesium levels: a randomized, double-blind, placebo-controlled clinical trial. J Hum Hypertens 23, 245251.
48. Kass, L, Weekes, J & Carpenter, L (2012) Effect of magnesium supplementation on blood pressure: a meta-analysis. Eur J Clin Nutr 66, 411418.
49. Taylor, EN, Forman, JP & Farwell, WR (2007) Serum anion gap and blood pressure in the national health and nutrition examination survey. Hypertension 50, 320324.
50. McCallum, L, Jeemon, P, Hastie, CE et al. (2013) Serum chloride is an independent predictor of mortality in hypertensive patients. Hypertension 62, 836843.
51. McCallum, L, Lip, S & Padmanabhan, S (2015) The hidden hand of chloride in hypertension. Pflugers Arch 467, 595603.
52. Mente, A, O’Donnell, MJ, Rangarajan, S et al. (2014) Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med 371, 601611.
53. Hu, GM, Xu, XJ, Liang, XH et al. (2013) Associations of plasma atrial natriuretic peptide and electrolyte levels with essential hypertension. Exp Ther Med 5, 14391443.
54. Diz, DI (2008) Lewis K. Dahl memorial lecture: the renin–angiotensin system and aging. Hypertension 52, 3743.
55. Carretero, OA & Oparil, S (2000) Essential hypertension. Part I: definition and etiology. Circulation 101, 329335.


Type Description Title
Supplementary materials

Wu et al. supplementary material
Tables S1-S3

 Word (25 KB)
25 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed