Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T21:37:59.092Z Has data issue: false hasContentIssue false

Stability properties of multidimensional symmetric hyperbolic systems with damping, differential constraints and delay

Published online by Cambridge University Press:  07 September 2023

Gilbert Peralta*
Affiliation:
Department of Mathematics and Computer Science, University of the Philippines Baguio, Governor Pack Road, Baguio, 2600 Philippines, (grperalta@up.edu.ph)

Abstract

Multidimensional linear hyperbolic systems with constraints and delay are considered. The existence and uniqueness of solutions for rough data are established using Friedrichs method. With additional regularity and compatibility on the initial data and initial history, the stability of such systems are discussed. Under suitable assumptions on the coefficient matrices, we establish standard or regularity-loss type decay estimates. For data that are integrable, better decay rates are provided. The results are applied to the wave, Timoshenko, and linearized Euler–Maxwell systems with delay.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R. A.. Sobolev Spaces (Academic Press, New York, 1975).Google Scholar
Arendt, W., Batty, C. J. K., Hieber, M. and Neubrander, F.. Vector-Valued Laplace Transforms and Cauchy Problems. 2nd Ed. (Springer, Birkhäuser Basel, 2011).CrossRefGoogle Scholar
Benzoni-Gavage, S. and Serre, D.. Multi-Dimensional Hyperbolic Partial Differential Equations: First-Order Systems and Applications (Oxford University Press, Oxford, 2007).Google Scholar
Chen, W. and Dao, T. A.. On the Cauchy problem for semilinear regularity-loss-type $\sigma$-evolution models with memory term. Nonlinear Anal.: Real World Appl. 59 (2021), 126.Google Scholar
Datko, R.. Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J. Control Optim. 26 (1988), 697713.CrossRefGoogle Scholar
Datko, R., Lagnese, J. and Polis, M. P.. An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 24 (1986), 152156.CrossRefGoogle Scholar
Fridman, E., Nicaise, S. and Valein, J.. Stabilization of second order evolution equations with unbounded feedback with time-dependent delay. SIAM J. Control Optim. 48 (2010), 50285052.CrossRefGoogle Scholar
Hale, J. K.. Theory of Functional Differential Equation (Springer-Verlag, New York, 1977).CrossRefGoogle Scholar
Ait Benhassi, E. M., Ammari, K., Boulite, S. and Maniar, L.. Exponential energy decay of some coupled second order systems. Semigroup Forum 86 (2013), 362382.CrossRefGoogle Scholar
Ide, K., Haramoto, K. and Kawashima, S.. Decay property of regularity-loss type for dissipative Timoshenko system. Math. Models Methods Appl. Sci. 18 (2008), 647667.CrossRefGoogle Scholar
Ide, K. and Kawashima, S.. Decay property and regularity-loss type and nonlinear effects for dissipative Timoshenko systems. Math. Models Methods Appl. Sci. 18 (2008), 10011025.CrossRefGoogle Scholar
Kirane, M. and Said-Houari, B.. Existence and asymptotic stability of a viscoelastic wave equation with a delay. Z. Angew. Math. Phys. 62 (2011), 10651082.CrossRefGoogle Scholar
Liu, Y. and Ueda, Y.. Decay estimate and asymptotic profile for a plate equation with memory. J. Differ. Equ. 268 (2020), 24352463.CrossRefGoogle Scholar
Matsumura, A.. On the asymptotic behavior of solutions of semi-linear wave equations. Publ. RIMS. Kyoto Univ., 12 (1976), 169189.CrossRefGoogle Scholar
Nicaise, S. and Pignotti, C.. Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45 (2006), 15611585.CrossRefGoogle Scholar
Nicaise, S. and Pignotti, C.. Stabilization of the wave equation with boundary or internal distributed delay. Differ. Integral Equ. 21 (2008), 935958.Google Scholar
Nicaise, S. and Pignotti, C.. Interior feedback stabilization of wave equations with time dependent delay. Electron. J. Differ. Equ. 41 (2011), 120.Google Scholar
Nicaise, S. and Rebiai, S.. Stabilization of the Schrödinger equation with a delay term in boundary feedback or internal feedback. Port. Math. 68 (2011), 1939.CrossRefGoogle Scholar
Nicaise, S., Valein, J. and Fridman, E.. Stability of the heat and of the wave equations with boundary time-varying delays. Discrete Contin. Dyn. Syst.-S 2 (2009), 559581.Google Scholar
Nirenberg, L.. On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13 (1959), 115162.Google Scholar
Peralta, G. and Kunisch, K.. Interface stabilization of a parabolic-hyperbolic PDE system with delay in the interaction. Discrete Contin. Dyn. Syst.-S 38 (2018), 30553083.CrossRefGoogle Scholar
Peralta, G. and Propst, G.. Well-posedness and regularity of linear hyperbolic systems with dynamic boundary conditions. Proc. R. Soc. Edinb. A: Math. 146 (2016), 10471080.CrossRefGoogle Scholar
Peralta, G. and Ueda, Y., Stability condition for a system of delay-differential equations and its application. Preprint.Google Scholar
Rauch, J.. Hyperbolic Partial Differential Equations and Geometric Optics (American Mathematical Society, Providence, 2012).CrossRefGoogle Scholar
Rauch, J. and Massey, F. J.. Differentiability of solutions to hyperbolic initial boundary value problems. Trans. Am. Math. Soc. 189 (1974), 303318.Google Scholar
Russel, D. L.. A general framework for the study of indirect damping mechanisms in elastic systems. J. Math. Anal. Appl. 173 (1993), 339358.CrossRefGoogle Scholar
Shizuta, Y. and Kawashima, S.. Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14 (1985), 249275.CrossRefGoogle Scholar
Ueda, Y.. Optimal decay estimates of a regularity-loss type system with constraint condition. J. Differ. Equ. 264 (2018), 679701.CrossRefGoogle Scholar
Ueda, Y., Duan, R. and Kawashima, S.. Decay structure for symmetric hyperbolic systems with non-symmetric relaxation and its applications. Arch. Ration. Mech. Anal. 205 (2012), 239266.CrossRefGoogle Scholar
Ueda, Y., Duan, R. and Kawashima, S.. Decay structure of two hyperbolic relaxation models with regularity loss. Kyoto J. Math. 57 (2017), 235292.CrossRefGoogle Scholar
Ueda, Y. and Kawashima, S.. Decay property of regularity-loss type for the Euler–Maxwell system. Methods Appl. Anal. 18 (2011), 245268.Google Scholar
Ueda, Y., Wang, S. and Kawshima, S.. Dissipative structure of the regularity-loss type and time asymptotic decay of solutions for the Euler–Maxwell system. SIAM J. Math. Anal. 44 (2012), 20022017.CrossRefGoogle Scholar