1 Agmon, S.. Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of *N*-body Schrödinger operators. Mathematical Notes, vol. 29, (Princeton, NJ: Princeton University Press, University of Tokyo Press, Tokyo, 1982).

2Bambusi, D.. An introduction to Birkhoff normal form (Italy: Università di Milano, 2014).

3Bambusi, D. and Grébert, B.. Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J. 135 (2006), 507–567.

4Berestycki, H. and Lions, P.-L.. Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82 (1983), 313–345.

5Chambrion, T., Mason, P., Sigalotti, M. and Boscain, U.. Controllability of the discrete-spectrum Schrödinger equation driven by an external field. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 329–349.

6Craig, W. and Wayne, C. E.. Newton's method and periodic solutions of nonlinear wave equations. Comm. Pure Appl. Math. 46 (1993), 1409–1498.

7Dancer, E. N. and Poláčik, P.. Realization of vector fields and dynamics of spatially homogeneous parabolic equations. Mem. Amer. Math. Soc. 140 (1999), viii+82.

8Davies, E. B.. Spectral theory and differential operators. Cambridge Studies in Advanced Mathematics, vol. 42 (Cambridge: Cambridge University Press, 1995).

9Fiedler, B. and Poláčik, P.. Complicated dynamics of scalar reaction diffusion equations with a nonlocal term. Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 167–192.

10Gårding, L.. On the essential spectrum of Schrödinger operators. J. Funct. Anal. 52 (1983), 1–10.

11Hébrard, P. and Henrot, A.. A spillover phenomenon in the optimal location of actuators. SIAM J. Control Optim. 44 (2005), 349–366.

12Henry, D.. Perturbation of the boundary for boundary value problems of partial differential operators (Cambridge: Cambridge University Press, 2005).

13Hislop, P. D. and Sigal, I. M.. Introduction to spectral theory. Applied Mathematical Sciences, vol. 113 (New York: Springer-Verlag, 1996), With applications to Schrödinger operators.

14Kato, T.. Perturbation theory for linear operators (Berlin: Springer-Verlag, 1966).

15Kuksin, S.B.. Hamiltonian PDEs.In Handbook of dynamical systems, vol. 1B, pp. 1087–1133 (Amsterdam: Elsevier B. V., 2006, With an appendix by Dario Bambusi.

16Mason, P. and Sigalotti, M.. Generic controllability properties for the bilinear Schrödinger equation. Comm. Partial Diff. Equ. 35 (2010), 685–706.

17Metafune, G. and Schnaubelt, R.. The domain of the Schrödinger operator $-\Delta +x^2y^2$. Note Mat. 25 (2005/06), 97–103. 18Metafune, G., Prüss, J., Schnaubelt, R. and Rhandi, A.. *L* ^{p}-regularity for elliptic operators with unbounded coefficients. Adv. Diff. Equ. 10 (2005), 1131–1164.

19Persson, A.. Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator. Math. Scand. 8 (1960), 143–153.

20Poláčik, P.. High-dimensional *ω*-limit sets and chaos in scalar parabolic equations. J. Diff. Equ. 119 (1995), 24–53.

21 Poláčik, P.. Parabolic equations: asymptotic behavior and dynamics on invariant manifolds. In Handbook on dynamical systems, vol. 2 (ed.Fiedler, B.), pp. 835–883 (Amsterdam: Elsevier, 2002).

22Poláčik, P. and Valdebenito, D. A.. Existence of quasiperiodic solutions of elliptic equations on ${\open R}^{N+1}$ via center manifold and KAM theorems. J. Diff. Equ. 262 (2017), 6109–6164. 23Privat, Y. and Sigalotti, M.. The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent. ESAIM Control Optim. Calc. Var. 16 (2010), 794–805. Erratum: 16 (2010), 806–807.

24Prizzi, M. and Rybakowski, K. P.. Complicated dynamics of parabolic equations with simple gradient dependence. Trans. Amer. Math. Soc. 350 (1998a), 3119–3130.

25Prizzi, M. and Rybakowski, K. P.. Inverse problems and chaotic dynamics of parabolic equations on arbitrary spatial domains. J. Diff. Equ. 142 (1998b), 17–53.

26Reed, M. and Simon, B.. Methods of mathematical physics, vol. IV New York: Academic Press, 1978).

27Scheurle, J.. Bifurcation of quasiperiodic solutions from equilibrium points of reversible dynamical systems. Arch. Rational Mech. Anal. 97 (1987), 103–139.

28Teytel, M.. How rare are multiple eigenvalues?. Comm. Pure Appl. Math. 52 (1999), 917–934.

29Valls, C.. Existence of quasi-periodic solutions for elliptic equations on a cylindrical domain. Comment. Math. Helv. 81 (2006), 783–800.

30Wayne, C. E.. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm. Math. Phys. 127 (1990), 479–528.

31Zuazua, E.. Switching control. J. Eur. Math. Soc. (JEMS) 13 (2011), 85–117.