Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-01T04:34:43.774Z Has data issue: false hasContentIssue false

Quasilinear duality and inversion in Banach spaces

Published online by Cambridge University Press:  11 January 2024

Jesús M. F. Castillo
Affiliation:
Instituto de Matemáticas Imuex, Universidad de Extremadura, Avenida de Elvas, 06071 Badajoz, Spain (castillo@unex.es)
Manuel González
Affiliation:
Departamento de Matemáticas, Universidad de Cantabria, Avenida de los Castros s/n, 39071 Santander, Spain (manuel.gonzalez@unican.es)
Rights & Permissions [Opens in a new window]

Abstract

We present a unified approach to the processes of inversion and duality for quasilinear and $1$-quasilinear maps; in particular, for centralizers and differentials generated by interpolation methods.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

1. Introduction

In this paper, we present a unified approach to the inversion and duality phenomena for centralizers and differential maps generated by interpolation processes, as studied in [Reference Castillo, Corrêa, Ferenczi and González7Reference Castillo and Ferenczi10]. While duality is a standard topic, inversion emerged through results from several papers:

  • [Reference Kalton and Peck17], where the twisted Hilbert space $Z_2$ is constructed, who has a representation as $0\longrightarrow \ell _2\longrightarrow Z_2 \longrightarrow \ell _2 \longrightarrow 0$. In that same paper, the authors show that $Z_2$ contains an Orlicz (non Hilbert) subspace $\ell _f$.

  • In [Reference Cabello Sánchez2], it is shown that $Z_2/\ell _f$ is isomorphic to $\ell _f^*$, and therefore $Z_2$ has a representation of the form $0\longrightarrow \ell _f\longrightarrow Z_2 \longrightarrow \ell _f^* \longrightarrow 0$. The nature of $Z_2/\ell _f$ is not considered in [Reference Kalton and Peck17].

  • The general theory of twisted sums developed in [Reference Kalton15, Reference Kalton and Peck17] establishes a correspondence between exact sequences $0\longrightarrow Y\longrightarrow Z \longrightarrow X \longrightarrow 0$ of quasi-Banach spaces and quasilinear maps $\Omega : X\longrightarrow Y$. The quasilinear map generating $0\longrightarrow \ell _2\longrightarrow Z_2 \longrightarrow \ell _2 \longrightarrow 0$ will be called ${\sf K}\hspace {-1pt}{\sf P}$ in this paper. The quasilinear map generating $0\longrightarrow \ell _f\longrightarrow Z_2 \longrightarrow \ell _f^* \longrightarrow 0$ has been called $\mho$ in [Reference Cabello Sánchez2].

  • The connection between ${\sf K}\hspace {-1pt}{\sf P}$ and $\mho$ was uncovered in [Reference Castillo, Corrêa, Ferenczi and González8] importing the notions of Domain and Range from complex interpolation theory [Reference Cwikel, Jawerth, Milman and Rochberg13]. Kalton [Reference Kalton16] had already established an intimate connection between complex interpolation and a special type of quasilinear maps called centralizers, paramount examples of which are ${\sf K}\hspace {-1pt}{\sf P}$ and $\mho$. In [Reference Castillo, Corrêa, Ferenczi and González8, Reference Castillo, Corrêa, Ferenczi and González9], it was shown that if $\Omega _{\Psi, \Phi }$ is the differential generated by two interpolators $(\Psi, \Phi )$ then $\Omega _{\Phi, \Psi }$ is a kind of inverse of $\Omega _{\Psi, \Phi }$. In particular, ${\sf K}\hspace {-1pt}{\sf P}$ and $\mho$ will be inverses in the sense considered in this paper.

In this paper, we transplant those ideas to a general context: each quasilinear map $\Omega : X\curvearrowright Y$ has an associated inverse quasilinear map $\Omega ^{-1}:\mathrm {Ran}\,(\Omega )\curvearrowright \mathrm {Dom}\,(\Omega )$, so that $\mathrm {Dom}\,(\Omega ^{-1}) = Y$, $\mathrm {Ran}\,(\Omega ^{-1}) = X$ and both $\Omega ^{-1}\Omega$ and $\Omega \Omega ^{-1}$ are bounded (which somehow justifies the name).

Duality is another delicate point in the study of exact sequences of Banach spaces. It was considered from different angles in [Reference Cabello Sánchez3Reference Cabello Sánchez, Castillo and Corrêa5, Reference Castillo and Moreno11]. In the second part of this paper, we will first set the duality ideas in the broader context of this paper and study their connections with inversion. For instance, we will show that under reasonable conditions $(\Omega ^{-1})^* = (\Omega ^*)^{-1}$. The final Applications section of the paper focuses on new results on duality and inversion for specific examples of quasilinear maps appearing in the literature.

2. Quasilinear maps and twisted sums in a broader context

Let $X$ and $Y$ be quasi-Banach spaces with quasi-norms $\|\cdot \|_X$ and $\|\cdot \|_Y$. We suppose that $Y$ is a subspace of some vector space $\Sigma$.

Definition 2.1 A map $\Omega :X\to \Sigma$ is called quasilinear from $X$ to $Y$ with ambient space $\Sigma$ and denoted $\Omega : X\curvearrowright Y$ if it is homogeneous and there exists a constant $C$ so that for each $x,z\in X$,

\[ \Omega(x+z)-\Omega x-\Omega z\in Y\quad \textrm{and}\quad \|\Omega(x+z)-\Omega x-\Omega z\|_Y \leq C(\|x\|_X +\|z\|_X\!). \]

The role of the ambient space was considered in [Reference Castillo and Ferenczi10]. There it was shown that given two quasilinear maps $\Phi, \Psi :X\curvearrowright Y$, the former with ambient space $A$ and the second with ambient space $B$ then one can consider that both maps have a certain common space $C$ as ambient space. The main implication of this is that $\Phi + \Psi$ exists.

Definition 2.2 A quasilinear map $\Omega :X\curvearrowright Y$ is said to be:

  • bounded if there exists a constant $D$ so that $\Omega x \in Y$ and $\|\Omega x\|_Y\leq D\|x\|_X$ for each $x\in X$.

  • trivial if there exists a linear map $L:X\longrightarrow \Sigma$ so that $\Omega - L: X\longrightarrow Y$ is bounded.

Definition 2.3 Let $\Phi, \Psi$ be quasilinear maps $X\curvearrowright Y$, that we can assume to have the same ambient space. They are said to be:

  • boundedly equivalent if $\Phi - \Psi$ is bounded.

  • equivalent if $\Phi - \Psi$ is trivial.

A quasilinear map $\Omega : X\curvearrowright Y$ generates a quasi-Banach twisted sum of $Y$ and $X$ defined as

\[ Y\oplus_\Omega X =\{(\beta,x)\in \Sigma\times X : \beta-\Omega x\in Y\} \]

and endowed with the quasi-norm $\|(\beta,x)\|_\Omega =\|\beta -\Omega x\|_Y+\|x\|_X$. Indeed,

(2.1)

where $\imath _1 (y) =(y,0)$ and $\pi _2(\beta,x)=x$ is an exact sequence and $\|(y,0)\|_\Omega =\|y\|_Y$ and $\|(\Omega x,x)\|_\Omega =\|x\|_X$.

If $\Omega$ is bounded then $Y\oplus _\Omega X=Y\times X$ and $\|y-\Omega x\|_Y +\|x\|_X$ and $\|y\|_Y+\|x\|_X$ are equivalent quasi-norms on this space. If $\Omega$ is trivial then $Y\oplus _\Omega X$ is isomorphic to $Y\oplus X$.

The map $B_\Omega : X\to Y\oplus _\Omega X$ defined by $B_\Omega x =(\Omega x,x)$ is a bounded homogeneous selection for $\pi _2$ such that $\|B_\Omega x\|_\Omega = \|x\|_X$ for each $x\in X$. If $B_1: X\to Y\oplus _\Omega X$ is another homogeneous bounded selection for $\pi _2$ then it has the form $B_1 x = (\Omega _1 x,x)$ and $\Omega _1:X\curvearrowright Y$ is a quasilinear map boundedly equivalent to $\Omega$: indeed, given $x,z\in X$, since $B_1(x+z)-B_1x-B_1z =(\Omega _1 (x+z)- \Omega _1 x-\Omega _1 z,0)\in Y\oplus _\Omega X$, we get $\Omega _1 (x+z)- \Omega _1 x-\Omega _1 z\in Y$ and

\begin{align*} \|\Omega_1 (x+z)- \Omega_1 x-\Omega_1 z\|_Y & =\|B_1(x+z)-B_1(x)-B_1z\|_\Omega\\ & \leq C'\left(\|B_1(x+z)\|_\Omega +\|B_1(x+z)\|_\Omega\right)\\ & \leq C''(\|x\|_X +\|z\|_X\!). \end{align*}

Moreover, for each $x\in X$, we have $(\Omega x,x), (\Omega _1 x,x)\in Y\oplus _\Omega X$, hence $\Omega x-\Omega _1 x\in Y$ and $\|\Omega x-\Omega _1 x\|_Y= \|(\Omega x-\Omega _1 x,0)\|_\Omega \leq C(\Omega )(1+\|B_1\|)\|x\|_X$.

The notions of domain and range of centralizer-like mappings $\Omega : X\curvearrowright Y$ have been considered in [Reference Castillo, Corrêa, Ferenczi and González7Reference Castillo and Ferenczi10].

Definition 2.4 Let $\Omega : X\curvearrowright Y$ be a quasilinear map with ambient space $\Sigma$.

  • The domain of $\Omega$ is the space $\mathrm {Dom}\,\Omega =\{x\in X :\Omega x\in Y\}$ endowed with the quasi-norm $\|x\|_D =\|x\|_X+\|\Omega x\|_Y$. Therefore, $\mathrm {Dom}\, \Omega$ can be identified with the subspace $\{x\in X :(0,x)\in Y\oplus _\Omega X\}$ of $Y\oplus _\Omega X$.

  • The range of $\Omega$ is the space $\mathrm {Ran}\,\Omega =\{\beta \in \Sigma : \exists x\in X,\, \beta -\Omega x\in Y \}= \{\beta \in \Sigma : \exists x\in X,\, (\beta,x)\in Y\oplus _\Omega X\}$, endowed with the quasi-norm $\|\beta \|_R =\inf \{\|(\beta,x)\|_\Omega : (\beta,x)\in Y\oplus _\Omega X\}$. Therefore, $\mathrm {Dom}\, \Omega$ can be identified with the quotient space $(Y\oplus _\Omega X)/\mathrm {Dom}\, \Omega$.

The domain and range of $\Omega$ are independent of the choice of the bounded selection chosen to define $\Omega$. More precisely:

Lemma 2.5 Let $\Phi, \Psi$ be equivalent quasilinear maps $X\curvearrowright Y$. Then $\mathrm {Dom}\, \Phi = \mathrm {Dom}\, \Psi$ and $\mathrm {Ran}\, \Phi =\mathrm {Ran}\, \Psi$.

Quite obviously,

Proposition 2.6 $\Omega : X\longrightarrow \mathrm {Ran}\,\Omega$ is bounded.

Proof. If $x\in X$ then $(\Omega x,x)\in Y\oplus _\Omega X$, hence $\Omega x\in \mathrm {Ran}\,\Omega$ and $\|\Omega x\|_R\leq \|(\Omega x,x)\|_\Omega =\|x\|_X$.

If $\imath _2 x=(0,x)$ and $\pi _1(\beta,x)=\beta$ then one has an exact sequence

(2.2)

Note that $\|(0,x)\|_\Omega =\|x\|_D$, $\|\beta \|_R\leq \|(\beta,x)\|_\Omega$ and $\pi _1$ is surjective with $\ker \pi _1=\textrm {Im}\, \imath _2$.

Corollary 2.7 If $\Omega$ is continuous at $0$ then the spaces $(\mathrm {Dom}\,\Omega,\|\cdot \|_D)$ and $(\mathrm {Ran}\,\Omega,\|\cdot \|_R)$ are complete.

Proof. Since $\{x\in X :(0,x)\in Y\oplus _\Omega X\}$ coincides with $\ker \pi _1$, it is closed in $Y\oplus _\Omega X$. A more pedestrian proof is possible: Suppose that $(0,x_n)$ converges to $(\beta,x)$ in $Y\oplus _\Omega X$. Then $\beta \in \mathrm {Ran}\,\Omega$ and

\[ \lim_{n\to \infty}\|\beta-\Omega(x_n-x)\|_Y + \|x_n-x\|_X =0, \]

hence $\beta -\Omega (x_n-x)\to 0$ in $Y$ and $x_n-x\to 0$ in $X$. By proposition 2.6, $\Omega (x_n-x)\to 0$ in $\mathrm {Ran}\,\Omega$. Since $\|y\|_R\leq \|(y,0)\|_\Omega =\|y\|_Y$ for each $y\in Y$, we get $\beta =0$.

3. Part I: Inversion

We want to introduce the quasilinear map defining the sequence (2.2) and call it $\Omega ^{-1}$. But, to preserve boundedness we need to be more specific:

Proposition 3.1 Let $\Omega :X\curvearrowright Y$ be a quasilinear map with ambient space $\Sigma$.

  • Let $M: \mathrm {Ran}\, \Omega \longrightarrow X$ be a homogeneous map such that $B(\beta )= (\beta, M\beta )$ is a homogeneous bounded selection $B: \mathrm {Ran}\, \Omega \longrightarrow Y\oplus _\Omega X$ for $\pi _1$ in (2.2) with $\|B\|\leq K$.

  • Let $J: \mathrm {Ran}\, \Omega \to X$ be a homogeneous map such that $J(\omega ) =x$ where $x\in X$ is such that $\|\omega - \Omega x\| + \|x\| \leq K \mathrm {dist}((\omega,x), \mathrm {Dom}\, \Omega )$.

Then $M$ and $J$ are boundedly equivalent quasilinear maps $\mathrm {Ran}\, \Omega \curvearrowright \mathrm {Dom}\, \Omega$.

Proof. It is clear that, by construction, both maps $M$ and $J$ define quasilinear maps $\mathrm {Ran}\, \Omega \curvearrowright \mathrm {Dom}\, \Omega$ with ambient space $X$. Indeed, given $\sigma, \mu \in \mathrm {Ran}\, \Omega$, $M(\sigma +\mu )-M(\sigma ) - M(\mu ) \in \mathrm {Dom}\, \Omega$ if only we prove that $\Omega ( M(\sigma +\mu )-M(\sigma ) - M(\mu ) )\in Y$. Since $(\sigma, M\sigma ), (\mu, M\mu ), (\sigma + \mu, M(\sigma + \mu )$ belong to $Y\oplus _\Omega X$ then also $(0, M\sigma + M\mu - M(\sigma + \mu )$ is in $Y\oplus _\Omega X$, which is what we want. Analogously with $J$.

To check their bounded equivalence, we show first that if $\omega \in \mathrm {Ran}\, \Omega$ then $M \omega - J\omega \in \mathrm {Dom}\, \Omega$. To get that it is enough to check that $(\omega, J\omega )\in Y\oplus _\Omega X$, as it clearly follows from $\|\omega - \Omega J \omega \|\leq K\textrm {dist}(\omega, \mathrm {Dom}\, \Omega )<\infty$, since then $(0, M\omega - J\omega )= (\omega, M\omega ) - (\omega, J\omega ) \in Y\oplus _\Omega X$. Finally

\begin{align*} \|M \omega - J \omega\| & = \|\Omega(M \omega - J \omega)\| \\ & =\|\omega - \Omega(J\omega) - \omega + \Omega(M\omega) - \Omega(M\omega) + \Omega(J\omega) + \Omega(M \omega - J \omega)\| \\ & \leq\|\omega - \Omega(J\omega)\| + \|\omega -\Omega(M\omega)\| + \|M\omega\| + \|J\omega\| \\ & \leq \|(\omega, M\omega)\| + \|\omega -\Omega(J\omega)\| + \|J\omega\| \\ & \leq K\|\omega\| + \|(\omega, J\omega)|\|\\ & \leq K\|\omega\| + K \mathrm{dist}((\omega, J\omega), \mathrm{Dom}\, \Omega)\\ & \leq K\|\omega\| + K \|(\omega, J\omega) - (0, J\omega - M\omega)\\ & \leq K\|\omega\| + K^2\|\omega\|.\end{align*}

Definition 3.2 We will call $\Omega ^{-1}: \mathrm {Ran}\, \Omega \curvearrowright \mathrm {Dom}\, \Omega$ the quasilinear map in the previous proposition

In [Reference Cabello Sánchez2], the map $\Omega ^{-1}$ was denoted $\mho$. Propositions 3.3 and 3.4 below show that $\Omega ^{-1}$ can be seen as an inverse of $\Omega$. One has:

Proposition 3.3

  • $\mathrm {Dom}\, \Omega ^{-1} =Y$

  • $\mathrm {Ran}\, \Omega ^{-1} = X$

  • $\Omega ^{-1}\Omega$ and $\Omega \Omega ^{-1}$ are both bounded.

  • [Reference Castillo, Corrêa, Ferenczi and González8, Proposition 3.8]: In the particular case in which $\Omega$ is the differential $\Omega _{\Psi, \Phi }$ associated to a pair $(\Psi, \Phi )$ of interpolators on the same Kalton space then $\Omega _{\Psi, \Phi }^{-1} = \Omega _{\Phi, \Psi }$, up to bounded equivalence.

Proof. If $\sigma \in \mathrm {Ran}\, \Omega \subset \Sigma$ is so that $\Omega ^{-1} \sigma \in \mathrm {Dom}\, \Omega$ then there is $x\in X$ so that $\sigma - \Omega x\in Y$ and $\Omega x = \Omega \Omega ^{-1} \sigma \in Y$. Consequently, $\sigma \in Y$. That $\mathrm {Ran}\, \Omega ^{-1} = X$ is obvious. Indeed, an obvious choice for $\Omega ^{-1}\Omega x$ is $x$. The other is analogous.

We can thus form the exact sequence

(3.1)

with $\imath _1x =(x,0)$ and $\pi _1(x,\beta )=\beta$ as usual; and show it is equivalent to (2.2): The map $\Omega ^{-1}$ defines the exact sequence (2.2) and, moreover:

Proposition 3.4 There is a commutative diagram

Proof. It is enough to observe that $U(\beta,x)=(x,\beta )$ is a bijective operator that makes commutative the diagram. Indeed, $U$ is well defined: if $(\beta,x)\in Y\oplus _\Omega X$ then $\beta \in \mathrm {Ran}\,\Omega$ and $(\beta,\Omega ^{-1}\beta )\in Y\oplus _\Omega X$. Thus, $(0, x-\Omega ^{-1}\beta )\in Y\oplus _\Omega X$, hence $x-\Omega ^{-1}\beta \in \mathrm {Dom}\,\Omega$ and $(x,\beta )\in \mathrm {Ran}\,\Omega \oplus _{\Omega ^{-1}} \mathrm {Dom}\,\Omega$.

$U$ is surjective: if $(x,z)\in \mathrm {Ran}\,\Omega \oplus _{\Omega ^{-1}} \mathrm {Dom}\,\Omega$ then $z\in \mathrm {Ran}\,\Omega$ and $x-\Omega ^{-1}z\in \mathrm {Dom}\,\Omega$. Thus, $(z,\Omega ^{-1}z), (0,x-\Omega ^{-1}z)\in Y \oplus _\Omega X$, hence $(z,x)\in Y\oplus _\Omega X$.

$U$ is bounded: $\|U(\beta,x)\|_{\Omega ^{-1}}= \|(x,\beta )\|_{\Omega ^{-1}}= \|(x-\Omega ^{-1}\beta \|_D +\|\beta \|_R$. Since $\|\beta \|_R\leq \|(\beta,x)\|_\Omega$ and

\begin{align*} \|x-\Omega^{{-}1}\beta\|_D & =\|(0,x-\Omega^{{-}1}\beta)\|_\Omega = \|(\beta,x)-(\beta,\Omega^{{-}1}\beta)\|_\Omega\\ & \leq C\|(\beta,x)\|_\Omega+ C\|(\beta,\Omega^{{-}1}\beta)\|_\Omega \leq C\|(\beta,x)\|_\Omega+ C\|B_p\| \|\beta\|_R, \end{align*}

we get $\|U(\beta,x)\|_{\Omega ^{-1}}\leq (C+C\|B_p\|+1)\|(\beta,x)\|_\Omega$, and $U^{-1}$ is bounded by the open mapping theorem.

With the same ideas we get that $\Omega$ and $(\Omega ^{-1})^{-1}$ are boundedly equivalent. The dominion and range of a map can be used to detect its boundedness.

Proposition 3.5 A quasilinear map $\Omega : X \curvearrowright Y$ is bounded if and only if $\mathrm {Dom}\,\Omega =X$ and if and only if $\mathrm {Ran}\,\Omega =Y$. Therefore, $\Omega$ is bounded if and only if so is $\Omega ^{-1}$.

Proof. The first assertion is immediate. Consequently, $\Omega ^{-1}$ bounded if and only if $\mathrm {Dom}\,\Omega ^{-1}=\mathrm {Ran}\,\Omega$. Since $\mathrm {Dom}\,\Omega ^{-1}=Y$ this is equivalent to $\mathrm {Ran}\,\Omega =Y$, which is equivalent to $\Omega$ bounded.

Let us consider the diagram

(3.2)

the unlabelled arrows are the natural inclusions. The diagram is commutative since $\pi _1 \imath _1 x =x$ and $\pi _2\imath _2 x=x$.

Proposition 3.6 Suppose that $\pi _2$ is strictly singular. Then $\pi _1$ is strictly singular if and only if the canonical inclusion $Y\longrightarrow \mathrm {Ran}\, \Omega$ is strictly singular. Analogously, if $\pi _1$ is strictly singular then $\pi _2$ is strictly singular if and only if the canonical inclusion $\mathrm {Dom}\, \Omega \longrightarrow X$ is strictly singular.

Proof. Using the criterion [Reference Cabello Sánchez, Castillo and Kalton6, Proposition 8] we get that since $\pi _2$ is strictly singular, $\pi _1$ is strictly singular if and only if so is $\pi _1\imath _1$.

4. Part II. Duality

To consider duality issues, we must confine ourselves to deal with Banach spaces since quasi-Banach spaces with trivial dual exist. But since a twisted sum of Banach space can be a quasi-Banach (non-Banach) space, we must also restrict ourselves to consider only exact sequences $0\longrightarrow Y \longrightarrow Z \longrightarrow X \longrightarrow 0$ in which the three terms $Y,Z,X$ are Banach spaces. When $\Omega : X\curvearrowright Y$ is quasilinear, then we only know that $Y\oplus _\Omega X$ is a quasi-Banach space. To guarantee that it is isomorphic to a Banach space, we must impose to the map $\Omega$ an additional condition:

Definition 4.1 A quasilinear map $\Omega : X\curvearrowright Y$ is said to be a $1$-quasilinear map if there is a constant $C$ such that for all finite sequences of elements $x_1, \ldots, x_N \in X$

  1. (a) $\Omega (\sum _{n=1}^N x_n)- \sum _{n=1}^N \Omega (y_n)\in Y$

  2. (b) $\|\Omega (\sum _{n=1}^N x_n)- \sum _{n=1}^N \Omega (x_n)\|_{Y}\leq C\sum _{n=1}^N \|x_n\|_X\!$.

If $\Omega$ is $1$-quasilinear then $\|\cdot \|_\Omega$ is equivalent to a norm, and thus $X\oplus _\Omega Y$ is a Banach space. Kalton showed [Reference Kalton15] that quasilinear maps on $B$-convex Banach spaces are $1$-quasilinear while Kalton and Roberts [Reference Kalton and Roberts18] showed that quasilinear maps on $\mathcal {L}_\infty$ spaces are $1$-quasilinear. We will say that a quasilinear map $\Omega :X\curvearrowright Y$ has dense domain if $\mathrm {Dom}\,\Omega$ is a dense subspace of $X$.

Proposition 4.2 Let $\Omega :X \curvearrowright Y$ be a $1$-quasilinear map with dense domain. Then the map $J:\mathrm {Dom}\,\Omega \times Y\to Y\oplus _\Omega X$ given by $J(x,y)= (y,x)$ is a continuous operator with dense range.

Proof. Let $(x,y)\in \mathrm {Dom}\,\Omega \times Y$. Then

\[ \|J(x,y)\|_\Omega =\|y-\Omega x\|_Y+\|x\|_X\leq C(\|y\|_Y+\|\Omega x\|_Y\!)+\|x\|_X \leq C(\|x\|_D+\|y\|_Y\!). \]

For the second part, let $(\beta,x)\in Y\oplus _\Omega X$ and $\varepsilon >0$, and consider the exact sequence (2.1). Since $\mathrm {Dom}\,\Omega$ is dense in $X$, we can select $z\in \mathrm {Dom}\,\Omega$ such that $\|q(\beta,x)-z\|_X<\varepsilon$. Then $(\beta,x-z)\in Y\oplus _\Omega X$ and $\textrm {dist}((\beta,x-z),\ker q)<\varepsilon$. So we can choose $y\in Y$ such that $\|(\beta,x)-(y,z)\|<\varepsilon$.

Corollary 4.3 Let $\Omega :X \curvearrowright Y$ be a $1$-quasilinear map with dense domain. Then

  1. (1) $\Omega ^{-1}$ has dense domain; i.e. $Y$ is continuously embedded and dense in $\mathrm {Ran}\,\Omega$.

  2. (2) $(\mathrm {Ran}\,\Omega )^*$ is continuously embedded in $Y^*$.

Proof. (1) If $y\in Y$ then $(y,0) \in Y\oplus _\Omega X$, hence $y\in \mathrm {Ran}\,\Omega$ and $\|y\|_R\leq \|(y,0)\|_\Omega =\|y\|_Y$. Let $\beta \in \mathrm {Ran}\,\Omega$ and $\varepsilon >0$, and take $x\in X$ with $(\beta,x)\in Y\oplus _\Omega X$. By proposition 4.2, there is $(y,z)\in Y\times \mathrm {Dom}\,\Omega$ such that $\|(\beta,x)-(y,z)\|_\Omega <\varepsilon$. Thus, $\|\beta -y\|_R\leq \|(\beta,x)-(y,z)\|_\Omega <\varepsilon$. Note that $\Omega ^{-1}$ is defined in $\mathrm {Ran}\,\Omega$ and, by proposition 3.3, $\mathrm {Dom}\,\Omega ^{-1}=Y$. (2) follows from (1).

Consider the dual sequences of (2.1) and (2.2), namely:

(4.1)
(4.2)

By proposition 4.2, the conjugate operator $J^*:(Y\oplus _\Omega X)^*\to (\mathrm {Dom}\,\Omega )^*\times Y^*$ is continuous and injective. Therefore, if $F\in (Y\oplus _\Omega X)^*$ then $J^*F= (\alpha ^*,y^*)\in (\mathrm {Dom}\,\Omega )^*\times Y^*$.

Proposition 4.4 Let $\Omega$ be a quasilinear map from $X$ to $Y$ with dense domain. Let $F\in (Y\oplus _\Omega X)^*$ and suppose that $J^*F= (\alpha ^*,y^*)$. Then $j^* F =y^*$ and $i^*F=\alpha ^*$.

Proof. Let $F\in (Y\oplus _\Omega X)^*$, $y\in Y$ and $x\in \mathrm {Dom}\,\Omega$. Then

\begin{align*} \langle j^*F,y \rangle & = \langle F,jy \rangle = \langle F,(y,0) \rangle = \langle F,J(0,y)\rangle\\ & = \langle J^*F,(0,y)\rangle = \langle (\alpha ^*,y^*),(0,y)\rangle =\langle y^*,y\rangle, \end{align*}

and similarly $\langle i^*F,x \rangle = \langle \alpha ^*,x\rangle$.

We pass to the definition of the dual $1$-quasilinear map. Since $X^*$ is a subspace of $(\mathrm {Dom}\,\Omega )^*$, Proposition 4.4 allows us to define a map $\Omega ^*$ as follows:

Definition 4.5 Let $\Omega : X\curvearrowright Y$ be a $1$-quasilinear map with dense domain, and let $B$ be a homogeneous bounded selection for the quotient map $\imath _1^*$. We define the map $\Omega ^*: Y^*\to (\mathrm {Dom}\,\Omega )^*$ by $J^*B y^*= (\Omega ^*y^*,y^*)$.

Proposition 4.6 Let $\Omega : X\curvearrowright Y$ be a $1$-quasilinear map with dense domain. The map $\Omega ^*: Y^* \curvearrowright X^*$ is $1$-quasilinear with ambient space $(\mathrm {Dom}\,\Omega )^*$ and there exists an isomorphism from $X^*\oplus _{\Omega ^*} Y^*$ onto $(Y\oplus _\Omega X)^*$.

Proof. Since $B$ is a selector for $\imath _1^*$, for every finite set $y_1^*, \ldots, y_n^*$ one has $\sum B(y_i^*)- B(\sum y_i^*) \in \ker \imath _1^*=\textrm {Im}\, \pi _2^*$ and thus

\begin{align*} J^*\sum B(y_i^*)- J^*B\left(\sum y_i^*\right)& = \sum \left( \Omega^*(y_i^*), y_i^*\right) - \left(\Omega^*\left(\sum y_i^*\right), \sum y_i^*\right)\\ & =\left( \sum \Omega^*(y_i^*) - \Omega^*\left(\sum y_i^*\right),0 \right)\\ & \in X^*\oplus_{\Omega^*} Y^* \end{align*}

hence $\sum \Omega ^*(y_i^*) - \Omega ^*(\sum y_i^*)\in X^*$ and $\|\sum \Omega ^*(y_i^* )-\Omega ^*(\sum y_i^*)\|_{X^*}\leq 2\|B\|\sum \|y_i^*\|_{Y^*}.$

We claim that $X^*\oplus _{\Omega ^*} Y^*= J^*((Y\oplus _\Omega X)^*)$. Indeed, if $(\alpha ^*,y^*)\in X^*\oplus _{\Omega ^*} Y^*$ then $\alpha ^*-\Omega ^*y^*\in X^*$. Thus, $(\alpha ^*-\Omega ^*y^*,0)\in J^*((Y\oplus _\Omega X)^*)$, hence $(\alpha ^*,y^*) =(\alpha ^*-\Omega ^*y^*,0) +J^*By^* \in J^*((Y\oplus _\Omega X)^*)$. Conversely, if $(\alpha ^*,y^*)=J^* F$ for some $F\in (Y\oplus _\Omega X)^*$ then $\imath _1^*F=y^*$. Thus, $J^*(F-By^*)=(\alpha ^*-\Omega ^*y^*,0)\in \ker \imath _1^*$, hence $\alpha ^*-\Omega ^*y^*\in X^*$, and we get $(\alpha ^*,y^*)\in X^*\oplus _{\Omega ^*} Y^*$.

Now we consider the formal identity map $W:X^*\oplus _{\Omega ^*} Y^*\to (\mathrm {Dom}\,\Omega )^*\times Y^*$ defined by $W(\alpha ^*,y^*)= (\alpha ^*,y^*)$. Since $W(\alpha ^*,y^*)= (\alpha ^*-\Omega ^*y^*,0) +J^*B y^*$, we get

\begin{align*} \|W(\alpha^*,y^*)\| & \leq \|(\alpha^*-\Omega^*y^*,0)\| +\|J^*By^*\|\\ & \leq \|\alpha^*-\Omega^*y^*\|_{X^*}+\|J^*\|\cdot\|B\|\cdot \|y^*\|_{Y^*}\\ & \leq \|J^*\|\cdot\|B\|\cdot \|(\alpha^*,y^*)\|_{\Omega^*}. \end{align*}

Thus, $W$ is continuous. Since $J^{*-1}$ is a closed operator, $V=J^{*-1}W$ is a closed bijective operator from $X^*\oplus _{\Omega ^*} Y^*$ onto $(Y\oplus _\Omega X)^*$. By the closed graph theorem, $V$ is an isomorphism.

We will refer to $\Omega ^*$ as the adjoint of $\Omega$. We have the following duality relations.

Proposition 4.7 Let $\Omega :X \curvearrowright Y$ be a $1$-quasilinear map with dense domain.

  1. (1) $\mathrm {Ran}\,\Omega ^* =(\mathrm {Dom}\,\Omega )^*$

  2. (2) $\mathrm {Dom}\,\Omega ^* =(\mathrm {Ran}\,\Omega )^*$.

Proof.

  1. (1) If $\alpha ^*\in (\mathrm {Dom}\,\Omega )^*$, there is $F\in (Y\oplus _\Omega X)^*$ such that $\imath _1^*F=\alpha ^*$. Then $J^*F=(\alpha ^*,y^*)$, hence $(\alpha ^*,y^*)\in X^*\oplus _{\Omega ^*} Y^*$, and thus $\alpha ^*\in \mathrm {Ran}\,\Omega ^*$.

  2. (2) Suppose that $y^*\in \mathrm {Dom}\,\Omega ^* =\{y^*\in Y^* : \Omega ^*y^*\in X^*\}$. Then $(0,y^*)\in X^*\oplus _{\Omega ^*} Y^*$, hence $F=V(0,y^*)\in (Y\oplus _{\Omega } X)^*$. Since $i^* F=0$, we get $F\in \textrm {Im}\, p^*$, hence $y^*\in (\mathrm {Ran}\,\Omega )^*$. If $y^*\in (\mathrm {Ran}\,\Omega )^*$, then $y^*\in Y^*$ by corollary 4.3. Moreover, $V^{-1}p^*y^*=(0,y^*)\in X^*\oplus _{\Omega ^*} Y^*$. Then $\Omega ^*y^*\in X^*$, hence $y^*\in \mathrm {Dom}\,\Omega ^*$.

The next result shows that $(\Omega ^*)^{-1}$ and $(\Omega ^{-1})^*$ are equivalent.

Theorem 4.8 The exact sequence

generated by the $1$-quasilinear map $(\Omega ^{-1})^*$ and the exact sequence

generated by $(\Omega ^*)^{-1}$ are equivalent.

Proof. Proposition 4.7 allows us to write the diagram

and theorem 4.6 shows that $J^*$ makes it commutative: $J^*\pi _1^* = (\pi _1 J)^*$ and $\pi _1 J^* = \imath _2^*$.

We describe next the duality action of $X^*\oplus _{\Omega ^*} Y^*$ on (a dense subspace of) $Y\oplus _\Omega X$.

Theorem 4.9 Let $\Omega : X\curvearrowright Y$ be a $1$-quasilinear map with dense domain.

  • Given $(\alpha ^*,y^*)\in X^*\oplus _{\Omega ^*} Y^*$ and $(y,z)\in J(\mathrm {Dom}\,\Omega \times Y)$,

    \[ \langle V(\alpha^*,y^*),(y,z)\rangle = \langle\alpha^* ,z \rangle + \langle y^*,y\rangle. \]
  • There exists $C>0$ such that for each $z\in Dom\Omega$ and $y^*\in Y^*$,

    \[ \left|\langle y^*,\Omega z\rangle +\langle \Omega^*y^*,z\rangle \right|\leq C\|y^*\|_{Y^*}\|z\|_X\!. \]

Proof. For the first part, $\langle V(\alpha ^*,y^*),J(z,y)\rangle = \langle (\alpha ^*,y^*),(z,y)\rangle = \langle \alpha ^* ,z \rangle + \langle y^*,y\rangle$. For the second part, note that $(\Omega z,z)\in Y\oplus _\Omega X$, $(\Omega ^* y^*,y^*)\in X^*\oplus _{\Omega ^*} Y^*$ and

\begin{align*} \left|\langle y^*,\Omega z\rangle+ \langle\Omega^* y^*,z\rangle \right| & = \left|\langle V(\Omega^* y^*,y^*),(\Omega z,z)\rangle\right|\\ & \leq \|V\|\cdot\|(\Omega^* y^*,y^*)\|_{\Omega^*}\|(\Omega z,z)\|_\Omega\\ & \leq \|V\|\cdot\|B_{j^*}\|\cdot\|y^*\|_{Y^*}\|z\|_X.\end{align*}

Summing up since any exact sequence $0\longrightarrow Y \longrightarrow Z \longrightarrow Z \longrightarrow 0$ of Banach spaces has a dual sequence $0\longrightarrow X^* \longrightarrow Z^* \longrightarrow X^* \longrightarrow 0$, one can associate a classical $1$-quasilinear map $\Omega ^*: Y^*\longrightarrow X^*$ to any classical $1$-quasilinear map $\Omega : X\longrightarrow Y$. The quasilinear map $\Omega ^*$ exists but is not unique. A different thing is what occurs with $1$-quasilinear maps $X\curvearrowright Y$ with ambient space $\Sigma$ as those we are dealing with in this paper. Let us first revisit the so-called Kalton duality explained in [Reference Castillo and Moreno11] for classical quasilinear maps

Definition 4.10 Two $1$-quasilinear maps $\Omega : B \to A$ and $\Phi : A^*\to B^*$ are called bounded duals to one of the other if there is $C=C(\Omega, \Phi )>0$ such that for every $b\in B, a^*\in A^*$ one has

\[ |\langle \Omega b, a^*\rangle + \langle b, \Phi a^*\rangle |\leq C \|b\|\|a^*\|. \]

It is easy to check that if $\Phi, \Psi$ are both bounded duals of $\Omega$ then $\Phi - \Psi$ is bounded:

\begin{align*} \left \langle (\Phi - \Psi)(x), y\rangle\right| & = \left \langle \Phi x, y\rangle + \langle x, \Omega y \rangle - \langle x, \Omega y\rangle - \langle \Psi x, y\rangle\right|\\ & \leq (C(\Phi, \Omega) +C(\Psi, \Omega)) \|x\|\|y\| \end{align*}

Proposition 4.11 If $\Omega$ generates the exact sequence $0\to A \stackrel {\imath }\to A\oplus _\Omega B \stackrel {\pi }\to B \to 0$ and $\Phi$ is a bounded dual of $\Omega$ then $\Phi$ generates the dual sequence $0\to B^*\to (A\oplus _{\Omega } B)^* \to A^* \to 0$, with the meaning that there is an operator $D: B^*\oplus _\Phi A^* \longrightarrow (A\oplus _\Omega B)^*$ given by

\[ \langle D(b^*, a^*), (a,b)\rangle = \langle b^*, b\rangle + \langle a^*, a \rangle \]

making a commutative diagram

In particular, the spaces $B^*\oplus _\Phi A^*$ and $(A\oplus _\Omega B)^*$ are isomorphic via the pairing

\[ \langle (b^*, a^*), (a,b)\rangle = \langle b^*, b\rangle + \langle a^*, a \rangle \]

Proof. The continuity of $D$ is:

\begin{align*} \langle b^*, b\rangle + \langle a^*, a \rangle & = \langle b^*, b\rangle + \langle a^*, a -\Omega b\rangle + \langle a^*, \Omega b\rangle \\ & = \langle b^* - \Phi a^*, b\rangle + \langle \Phi a^*,, b\rangle + \langle a^*, a -\Omega b\rangle + \langle a^*, \Omega b\rangle \\ & \leq C|a^*\| \|b\| + \|a^*\|\|a- \Omega b\| + \|b^*\|\|b^* - \Phi a^*\|\\ & \leq C'\|(a, b)\|_\Omega \|(b^*, a^*)\|_\Phi. \end{align*}

Moreover $D$ makes the diagram commutative: $D\imath = \pi ^*$ since

\[ D\imath(b^*)(a,b) = D(b^*, 0)(a,b) = \langle b^*, b\rangle = b^*\pi(a,b) = \pi^*(b^*)(a,b) \]

while $\imath ^* D = \pi$ since

\[ \imath^* D(b^*, a^*)(a) = D(b^*, a^*)(a,0) = \langle a^*, a\rangle = \pi(b^*, a^*)(a). \]

Finally, $D$ is an isomorphism by the $3$-lemma.

The approach via Kalton duality presents some difficulties in the context of this paper in which quasilinear maps take values in some ambient space. Let us formulate the result in a typical situation: complex interpolation theory. Let $(X_0,X_1)$ be a Banach couple with sum (or ambient space) $\Sigma$ and intersection $\Delta$, which is equipped with the norm $x\in X_0\cap X_1\longmapsto \max \big {(} \|x\|_0, \|x\|_1\big {)}$. We assume that $(X_0,X_1)$ is regular according to Cwikel [Reference Cwikel12], i.e. $\Delta$ is dense in each $X_i$. Cwikel shows in [Reference Cwikel12, Theorem 3.1]:

$\bigstar$ Each $X_i^*$ embeds into $\Delta ^*$ in such a way that $X_0^*\cap X_1^*=\Sigma ^*$.

Let $\Omega : X_0\cap X_1 \longrightarrow \Sigma$ and $\Phi : X_0^*\cap X_1^* \longrightarrow \Sigma$ be homogeneous maps. Observe that the duality conditions $\langle \Omega x, y\rangle$ and $\langle x, \Phi y\rangle$ make sense: $\Omega x\in \Sigma$, $y\in \Sigma ^*$ and $x\in \Delta$, $\Phi y\in \Sigma =\Delta ^*$. Let now $X$ be a Banach space so that $\Delta \subset X\subset \Sigma$ and $\Sigma ^*\subset X^* \subset \Delta ^*$ with $\Delta$ is still dense in $X$ and $\Sigma ^*$ dense in $X^*$. Assume that $\Omega :X \curvearrowright X$ is a quasilinear map with ambient space $\Sigma$ and $\Phi : X^*\curvearrowright X^*$ is a quasilinear map with ambient space $\Delta ^*$. If there exists $C>0$ such that for $x\in X_0\cap X_1=\Delta$, $y\in X_0^* \cap X_1^*=\Sigma ^*$ one has $\left | \langle \Omega x, y\rangle + \langle x, \Phi y\rangle \right | \leq C \|x\|\|y\|$ then $\Omega, \Phi$ are bounded duals to one of each other since there is an isomorphism $D(x^*,y^*)(y,x) = \langle x^*, x\rangle + \langle y^*, y\rangle$ making the diagram

commute. This is a reformulation of what was already proved before and is precisely the context presented in [Reference Cabello Sánchez, Castillo and Corrêa5]. To provide a more general version, we will use the following approach:

Theorem 4.12 Let $X,Y$ be reflexive Banach spaces so that:

  • Both $X$ and $X^*$ embed into an ambient space $\Sigma$ in such a way that there is a subspace $\Sigma _0$ that is dense both in $X$ and $X^*$ and $\Sigma \subset \Sigma _0^*$.

  • Both $Y$ and $Y^*$ embed into an ambient space $\Theta$ in such a way that there is a subspace $\Theta _0$ that is dense both in $Y$ and $Y^*$ and $\Theta \subset \Theta _0^*$.

Let $\Omega : X \curvearrowright Y$ be a $1$-quasilinear map with ambient space $\Theta$ and such that $\Omega [\Sigma _0]\subset \Theta _0$ and let $\Phi : Y^*\curvearrowright X^*$ be a $1$-quasilinear map with ambient space $\Sigma$ and such that $\Phi [\Theta _0]\subset \Sigma _0$. If the following condition holds:

$\bigstar \bigstar$ There is $C>0$ so that for every $x\in \sigma$, $y\in \theta$ one has $\left | \langle \Omega x, y\rangle + \langle x, \Phi y\rangle \right |\leq C \|x\|_X\|y\|_{Y^*}$

then $\Omega$ and $\Phi$ are bounded duals, so that the sequences $0\longrightarrow Y \longrightarrow Y\oplus _\Omega X \longrightarrow X\longrightarrow 0$ and $0\longrightarrow X^* \longrightarrow X^*\oplus _\Phi Y^* \longrightarrow Y^* \longrightarrow 0$ are dual one of the other and the spaces $X^*\oplus _\Phi Y^*$ and $(Y\oplus _\Omega X)^*$ are isomorphic under the duality

\[ \langle (\eta, y^*), (\omega, x) \rangle = \langle \eta, x \rangle + \langle \omega, y^*\rangle. \]

We connect now inversion and duality.

Lemma 4.13 Under conditions proposition 4.12, $( \mathrm {Dom}\, \Omega )^{\perp } = \mathrm {Dom}\, \Phi$ with the meaning $\mu \in ( \mathrm {Dom}\, \Omega )^{\perp } \Longleftrightarrow \jmath ^* \mu \in \mathrm {Dom}\, \Phi$.

Proof. Pick $\mu \in (\mathrm {Dom}\, \Omega )^{\perp }$ with $\|\mu \|=1$. Since $\mu \in (\mathrm {Dom}\, \Omega )^{\perp } \Longleftrightarrow \mu (0,b)=0$ for all $b\in \mathrm {Dom}\, \Omega$ then $\mu ( (\Omega b, b)) = \mu ( (\Omega b, 0)) = \langle \mu, \jmath \Omega b\rangle$ and also $|\langle \jmath ^*\mu, \Omega b \rangle | = |\langle \mu, \jmath \Omega b\rangle \leq C \|b\|$ one gets from the estimate $\left | \langle \Omega b, \jmath ^*\mu \rangle + \langle b, \Phi \jmath ^* \mu \rangle \right | \leq C \|b\|\|\mu \|$ that $\left | \langle b, \Phi \jmath ^* \mu \rangle \right | \leq C' \|b\|$ for all $b\in \mathrm {Dom}\, \Omega$ and since $\mathrm {Dom}\, \Omega$ is dense in $B$ by the hypotheses, $\left | \langle b, \Phi \jmath ^* \mu \rangle \right | \leq C' \|b\|$ for all $b\in B$; namely, $\Phi \jmath ^* \mu \in B^*$ which means that $\jmath ^* \mu \in \mathrm {Dom}\, \Phi$.

Theorem 4.14 If $\Omega, \Phi$ are in the conditions of the previous proposition and satisfy condition $(\bigstar \bigstar )$ then $(\Phi )^{-1} \sim (\Omega ^{-1})^*$.

Proof. Since $\Omega$ and $\Phi$ are bounded duals, there is no loss of generality replacing $\Phi$ by $\Omega ^*$. The proof is a drawing, in fact, two:

containing the two representations for $Z$ and their duals for $Z^*$. The exactness of the sequences for $Z$ means $\mathrm {Ran}\, \Omega = Z/\mathrm {Dom}\, \Omega$, hence $(\mathrm {Ran}\, \Omega )^*= (\mathrm {Dom}\, \Omega )^\perp$. Analogously $(\mathrm {Ran}\, \Omega ^{-1})^*= (\mathrm {Dom}\, \Omega ^{-1})^\perp$ and the right diagram becomes

Since the horizontal sequence is the dual of the original sequence $\Omega$ and the vertical is the dual of $\Omega ^{-1}$, the diagram is

Now apply proposition 4.13: use $(\mathrm {Dom}\, \Omega )^\perp = \mathrm {Dom}\, \Omega ^*$ to get $\mathrm {Dom}\, (\Omega ^*)^{-1} = (\mathrm {Dom}\, \Omega ^{-1})^*$ and $(\mathrm {Dom}\, \Omega )^* = \mathrm {Ran}\, \Omega ^*$ to get $\mathrm {Ran}\,(\Omega ^*)^{-1}= (\mathrm {Dom}\, \Omega ^{-1})^* = \mathrm {Ran}\, (\Omega ^{-1})^*$. The horizontal sequence $\Omega ^*$ is now

therefore $\Omega ^* = ((\Omega ^{-1})^{*})^{-1}$ and thus $(\Omega ^*)^{-1} = (\Omega ^{-1})^{*}$.

5. Applications

Given a suitable pair of Banach spaces $(X_0, X_1)$ with ambient space $\Sigma$, one can consider the sequence of Schechter interpolators $\Delta _{k, \theta }(f) =f^{(k)}(\theta )(1/2)/k!$ defined on the suitable Calderón space $\mathcal {C}$ corresponding to the pair, see [Reference Bergh and Löfström1] or [Reference Schechter21] for details. With those ingredients, one can generate, following [Reference Rochberg20], the family of associated Rochberg spaces $\mathcal {R}_n(\theta ) =\{ (\Delta _{n-1, \theta }(f), \ldots, \Delta _{0, \theta }(f)): f\in \mathcal {C}\}$, that generalize the complex interpolation space $\mathcal {R}_1(\theta )=(X_0,X_1)_\theta$ and twisted sum space $\mathcal {R}_2(\theta )= \mathcal {R}_1(\theta )\oplus _{\Omega _\theta } \mathcal {R}_1(\theta )$, where $\Omega _\theta$ is the differential quasilinear map associated to the couple $(\Delta _1, \Delta _0)$. It was shown in [Reference Cabello Sánchez, Castillo and Kalton6] that for each pair $m,k\in \mathbb {N}$ with $n=m+k$, there are natural exact sequences

that can be arranged forming commutative diagrams of exact sequences (we omit from now on the initial and final arrows $0\to \cdot$ and $\cdot \to 0$ and the parameter $\theta$)

Let $\Omega _{m,n}: \mathcal {R}_m \curvearrowright \Sigma ^n$ be the quasilinear map associated with the sequence $0\to \mathcal {R}_n\to \mathcal {R}_{n+m}\to \mathcal {R}_m \to 0$.

We shall consider three situations: first, the case of complex interpolation for the pair $(\ell _\infty, \ell _1)$ in which the involved differentials are not linear or bounded; second, translation operators which are bounded and homogeneous; third, the case of weighted Köthe spaces, in which the differentials are linear unbounded operators.

5.1 Higher-order Kalton–Peck maps

Our results will complete those in [Reference Castillo, Corrêa, Ferenczi and González9]. The interpolators $\delta _{\theta }'$ and $\delta _{\theta }$ that define complex interpolation yield as interpolation space $X_\theta =(\ell _\infty, \ell _1)_\theta =\ell _p$ for $p=\theta ^{-1}$ with associated differential ${\sf K}\hspace {-1pt}{\sf P}: X_\theta \curvearrowright X_\theta$, usually called the Kalton–Peck map,

\[ {\sf K}\hspace{-1pt}{\sf P} (x)= p\; x\log \frac{|x|}{\|x\|_p} \]

and associated twisted sum space $X_\theta \oplus _{{\sf K}\hspace {-1pt}{\sf P}} X_\theta = Z_p$, usually called the Kalton–Peck space [Reference Kalton and Peck17]. According to [Reference Kalton and Peck17, Lemma 5.3 (c)], see also [Reference Castillo, Corrêa, Ferenczi and González9], $\mathrm {Dom}\, {\sf K}\hspace {-1pt}{\sf P}$ is the Orlicz sequence space $\ell _{f_p}$ generated by $f_p(t)=t^p |\log t|^p$, while $\mathrm {Ran}\, {\sf K}\hspace {-1pt}{\sf P}$ can be obtained by duality as the Orlicz space $\ell _{f_p}^* = \ell _{f_p^*}$ generated by the Orlicz conjugate function $f_p^*$ of $f_p$ which, according to [Reference Lindenstrauss and Tzafriri19, Ex. 4.c.1], is equivalent to $g_q(t)=t^q|\log t |^{p(1-q)} = t^q|\log t |^{-q}$ at $0$, for $pq=p+q$. We now follow [Reference Cabello Sánchez, Castillo and Corrêa5, Reference Cabello Sánchez, Castillo and Kalton6, Reference Castillo, Corrêa, Ferenczi and González9] to construct the associated Rochberg spaces. Let us focus at $\theta =1/2$: in this case, each space $\mathcal {R}_n$ is isomorphic to its dual and this allows us to compare the associated differential with its dual and uncover remarkable symmetries. Precisely, $\mathcal {R}_1=\ell _2$, while $\mathcal {R}_2 = Z_2$, the Kalton–Peck space. Let ${\sf K}\hspace {-1pt}{\sf P}_{k,m}: \mathcal {R}_k\curvearrowright \mathcal {R}_m$ the $1$-quasilinear map with ambient space $\ell _\infty ^m$ that generates the sequence $0\longrightarrow \mathcal {R}_m \longrightarrow \mathcal {R}_n \longrightarrow \mathcal {R}_k \longrightarrow 0$. We are not interested here in the properties of the spaces $\mathcal {R}_n$, a topic studied in [Reference Cabello Sánchez, Castillo and Corrêa5, Reference Cabello Sánchez, Castillo and Kalton6, Reference Castillo, Corrêa, Ferenczi and González9], but in the properties of the maps ${\sf K}\hspace {-1pt}{\sf P}_{k,m}$. The case $m=k=1$ is in [Reference Kalton and Peck17]. In general, one has:

Theorem 5.1 The $1$-quasilinear maps ${\sf K}\hspace {-1pt}{\sf P}_{k,m}$ and ${({\sf K}\hspace {-1pt}{\sf P}_{m,k})}^*$ are isomorphic.

Proof. It was proved in [Reference Cabello Sánchez, Castillo and Corrêa5] that for each $n\in \mathbb {N}$ there is an isomorphism $u_n =\mathcal {R}_n\to \mathcal {R}_n^*$ given by

\[ u_n\left(a_{n-i}\right)_{i=1}^{n} = \left(({-}1)^{n-i} a_{n-i}\right)_{i=1}^{n}. \]

such that for each $m,k\in \mathbb {N}$ and $n=m+k$ the following diagram is commutative:

(5.1)

which implies that ${{\sf K}\hspace {-1pt}{\sf P}_{m,k}}^*$ is equivalent to $(-1)^ku_m {\sf K}\hspace {-1pt}{\sf P}_{k,m} u_k^{-1}$.

This yields the estimate:

\begin{align*} & |\langle {\sf K}\hspace{-1pt}{\sf P}_{m,k}(a_0, \ldots, a_{m-1}), (x_0, \ldots, x_{k-1}) \rangle\\ & \qquad + \langle ({-}1)^ku_m {\sf K}\hspace{-1pt}{\sf P}_{k,m} u_k^{{-}1}(x_0, \ldots, x_{k-1}), (a_0, \ldots, a_{m-1})\rangle|\\ & \quad\leq C \|(a_0, \ldots, a_{m-1})\|_{\mathcal{R}_m} \|(x_0, \ldots, x_{k-1})\|_{\mathcal{R}_k} \end{align*}

We know from [Reference Cabello Sánchez, Castillo and Kalton6] that

\begin{align*} {\sf K}\hspace{-1pt}{\sf P}_{1,2}(x) & = 2x(\log^2 \frac{|x|}{\|x\|}, \log \frac{|x|}{\|x\|})\\ {\sf K}\hspace{-1pt}{\sf P}_{2,1}(y,x) & = 2\left(y - 2x\log\frac{|x|}{\|x\|}\right) \log \frac{|y - 2x\log\frac{|x|}{\|x\|}|}{\|y - 2x\log\frac{|x|}{\|x\|}\|} + 2x\log^2\frac{|x|}{\|x\|} \end{align*}

and therefore the estimate $\left | \langle {\sf K}\hspace {-1pt}{\sf P}_{1,2}(x), z\rangle - \langle x, u_1{\sf K}\hspace {-1pt}{\sf P}_{2,1}u_2(z) \rangle \right | \leq C \|x\|_{\ell _2}\|z\|_{Z_2}$ becomes

\begin{align*} & \left |2xz_1\log^2 \frac{|x|}{\|x\|}+ 2xz_2 \log \frac{|x|}{\|x\|}\vphantom{\frac{|z_1 + 2z_2\log\frac{|z_2|}{\|z_2\|}|}{\|z_1 + 2z_2\log\frac{|z_2|}{\|z_2\|}\|}}\right.\\ & \left.\qquad -\, x \left(z_1 - 2z_2\log\frac{|z_2|}{\|z_2\|}\right) \log \frac{|z_1 + 2z_2\log\frac{|z_2|}{\|z_2\|}|}{\|z_1 + 2z_2\log\frac{|z_2|}{\|z_2\|}\|} - 2z_2\log^2\frac{|z_2|}{\|z_2\|} \right|\\ & \quad \leq C \|x\|_{\ell_2}\|(z_1, z_2)\|_{Z_2} \end{align*}

Beware that the $u_n's$ cannot be deleted. For instance, $({\sf K}\hspace {-1pt}{\sf P} x, x)\in Z_2$ while $({\sf K}\hspace {-1pt}{\sf P} x, -x)\notin Z_2$, no matter if $Z_2$ and $u_2[Z_2]$ are isometric.

5.2 Translation operators

Given a complex interpolation pair $(X_0, X_1)$ on the complex domain $U$ and $z, \theta \in U$, one can consider the pair of interpolators $(\Delta _{z}, \Delta _\theta )$ of evaluation at the points $z$ and $\theta$, respectively. Let $\texttt T_{z,\theta }$ be the associated quasilinear map, usually called the translation map. Let $B_\theta$ be a bounded homogeneous selector for $\Delta _\theta$, one has $\texttt T_{z,\theta } = B_\theta (z)$ and therefore $\texttt T_{z,\theta }: X_\theta \longrightarrow X_z$ is a bounded homogeneous map. Quite clearly, one has $\mathrm {Dom}\, \texttt T_{z, \theta }= X_\theta$ and $\mathrm {Ran}\, \texttt T_{z, \theta }= X_z$. Therefore, $\texttt T_{z, \theta }^{-1}=\texttt T_{\theta, z}$, in accordance with the last entry in proposition 3.3. Translation operators appear also in the so-called differential methods of Cwikel et al. [Reference Cwikel, Kalton, Milman and Rochberg14], and the previous results remain valid in that context.

5.3 Weighted Köthe spaces

Fix a Köthe function space $X$ with the Radon–Nikodym property, let $w_0$ and $w_1$ be weight functions, and consider the interpolation couple $(X_0, X_1)$, where $X_j= X(w_j)$, $j =0,1$ with their natural norms. In [Reference Castillo, Corrêa, Ferenczi and González7, Proposition 4.1], it was shown that $X_\theta = X(w_\theta )$ for $0<\theta <1$, where $w_{\theta } = w_0^{1 - \theta }w_1^{\theta }$. In [Reference Castillo, Corrêa, Ferenczi and González8], it was obtained $X(\omega _0) \cap X(\omega _1) = X(\omega _\vee )$ with $\omega _\vee = \max \{\omega _0, \omega _1\}$; $X(\omega _0) + X(\omega _1) = X(\omega _\wedge )$ with $\omega _\wedge = \min \{\omega _0, \omega _1\}$; $\mathrm {Dom}\,(\Omega _{\Psi, \Phi }) = X(w_\theta ) \cap X(w_\theta \left |\log {w_1}/{w_0}\right |)$ and $\mathrm {Ran}\,(\Omega _{\Psi, \Phi })= X(w_\theta )+ X(w_\theta \left |\log {w_1}/{w_0}\right |^{-1})$. For $\Psi = \Delta '_{\theta }$ and $\Phi = \Delta _{\theta }$, we obtain $\Omega _{\Psi, \Phi }f = \log {w_1}/{w_0}\cdot f$. Consequently, $\Omega _{\Psi, \Phi }^{-1}(x) = \Omega _{\Phi, \Psi }(x) = (\log {\omega _1}/{\omega _0})^{-1} x$. These maps are linear but unbounded, and in this case $\mathrm {Dom}\, \Omega _{\Psi, \Phi }f = \{f\in X(w): \log {w_1}/{w_0}\cdot f \in X(w)\} = X(w\log {w_1}/{w_0})$. Let us consider a specially interesting case already considered in [Reference Castillo, Corrêa, Ferenczi and González9]. Let $w$ be a weight sequence (we will understand as in [Reference Lindenstrauss and Tzafriri19, 4.e.1] a non-increasing sequence of positive numbers such that $\lim w_n=0$ and $\sum w_n=\infty$). We set $w_0=w^{-1}$ and $w_1=w$ and let us consider the interpolation pair $(\ell _2(w^{-1}), \ell _2(w))$, whose complex interpolation space at $1/2$ is $\ell _2$. A homogeneous bounded selector for $\Delta _0$ is $B(x)(z) = w^{2z-1}x$. Thus, $B(x)^{(n}(z) = 2^nw^{2z-1}\log ^n w \cdot x$ and therefore $B(x)^{(n}(1/2) = 2^n\log ^n w \cdot x$. Consequently,

\[ \Omega_{\langle n-1, \ldots, 1\rangle,0}(x) = \left(\frac{2^{n-1}}{(n-1)!}\log^{n-1} w \cdot x, \ldots, 2\log w \cdot x \right) \]

which yields

\[ \mathcal{R}_n = \{(y_{n-1}, \ldots, y_1, x)\in \ell_\infty^{n-1}\times \ell_2: (y_{n-1}, \ldots, y_1) - \Omega_{\langle n-1, \ldots, 1\rangle,0}(x)\in \mathcal{R}_{n-1}\} \]

In particular, $\mathcal {R}_2 = \{(y,x)\in \ell _\infty \times \ell _2: x\in \ell _2, \quad y - 2\log w \cdot x\in \ell _2\}$ is generated by the differential $\Omega _{1,0}(x) = 2\log w \cdot x$. Consequently, $\mathrm {Dom}\, \Omega _{1,0} = \ell _2(\log w)$ and $\mathrm {Ran}\, \Omega _{1,0}=\ell _2(\log ^{-1} w)$ and $\Omega _{1,0}^{-1}(x) = (2\log w)^{-1} \cdot x$. Analogously, it is now straightforward to check that

\[ \mathrm{Dom}\, \Omega_{\langle n-1, \ldots, 1\rangle,0} = \ell_2(\log^{n-1}w). \]

Acknowledgements

This research was supported in part by MINCIN Project PID2019-103961GB-C21. The research of the first author was supported in part by project IB20038 de la Junta de Extremadura

References

Bergh, J. and Löfström, J.. Interpolation spaces. An introduction (Berlin, Heidelberg: Springer, 1976).CrossRefGoogle Scholar
Cabello Sánchez, F.. Nonlinear centralizers with values in $L_0$. Nonlinear Anal. 88 (2014), 4250.CrossRefGoogle Scholar
Cabello Sánchez, F.. Nonlinear centralizers in homology. Math. Ann. 358 (2014), 779798.CrossRefGoogle Scholar
Cabello Sánchez, F. and Castillo, J. M. F.. Duality and twisted sums of Banach spaces. J. Funct. Anal. 175 (2000), 116.CrossRefGoogle Scholar
Cabello Sánchez, F., Castillo, J. M. F. and Corrêa, W. H. G.. Higher order derivatives of analytic families of Banach spaces, e-print arXiv:1906.06677v2.Google Scholar
Cabello Sánchez, F., Castillo, J. M. F. and Kalton, N. J.. Complex interpolation and twisted Hilbert spaces. Pacific J. Math. 276 (2015), 287307.CrossRefGoogle Scholar
Castillo, J. M. F., Corrêa, W. H. G., Ferenczi, V. and González, M.. Stability properties of twisted sums generated by complex interpolation. J. Inst. Math. Jussieu 21 (2022), no. 1, 303334.CrossRefGoogle Scholar
Castillo, J. M. F., Corrêa, W. H. G., Ferenczi, V. and González, M.. Differential processes generated by two interpolators. RACSAM 114 (2020), 183.CrossRefGoogle Scholar
Castillo, J. M. F., Corrêa, W. H. G., Ferenczi, V. and González, M.. Interpolator symmetries and new Kalton-Peck spaces, eprint arXiv:2111.10640.Google Scholar
Castillo, J. M. F. and Ferenczi, V.. Group actions on twisted sums of Banach spaces, eprint arXiv:2003.09767v2.Google Scholar
Castillo, J. M. F. and Moreno, Y.. Twisted dualities in Banach space theory, in ‘Banach spaces and their applications in analysis’, in Honor of Nigel Kalton's 60th Birthday (B. Randrianantoanina and N. Randrianantoanina, eds.) (Walter de Gruyter, 2007), pp. 59–76.Google Scholar
Cwikel, M.. Lecture notes on duality and interpolation spaces, e-print arXiv:0803.3558v2 (2014).Google Scholar
Cwikel, M., Jawerth, B., Milman, M. and Rochberg, R.. Differential estimates and commutators in interpolation theory, in ‘Analysis at Urbana II’, London Mathematical Society, Lecture Notes Series 138, E.R. Berkson, N.T. Peck, J.J. Uhl (eds.) (Cambridge Univ. Press, 1989), pp. 170–220.CrossRefGoogle Scholar
Cwikel, M., Kalton, N. J., Milman, M. and Rochberg, R.. A unified theory of commutator estimates for a class of interpolation methods. Adv. Math. 169 (2002), 241312.CrossRefGoogle Scholar
Kalton, N. J.. The three-space problem for locally bounded F-spaces. Compositio Math. 37 (1978), 243276.Google Scholar
Kalton, N. J.. Differentials of complex interpolation processes for Köthe function spaces. Trans. Amer. Math. Soc. 333 (1992), 479529.Google Scholar
Kalton, N. J. and Peck, N. T.. Twisted sums of sequence spaces and the three space problem. Trans. Amer. Math. Soc. 255 (1979), 130.CrossRefGoogle Scholar
Kalton, N. J. and Roberts, J. W.. Uniformly exhaustive submeasures and nearly additive set functions. Trans. Amer. Math. Soc. 278 (1983), 803816.CrossRefGoogle Scholar
Lindenstrauss, J. and Tzafriri, L.. Classical Banach spaces I, sequence spaces (Berlin, Heidelberg: Springer, 1977).Google Scholar
Rochberg, R.. Higher order estimates in complex interpolation theory. Pacific J. Math. 174 (1996), 247267.CrossRefGoogle Scholar
Schechter, M.. Complex interpolation. Compositio Math. 18 (1967), 117147.Google Scholar