Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T20:52:35.031Z Has data issue: false hasContentIssue false

The transport of iron and copper across the cell membrane: different mechanisms for different metals?

Published online by Cambridge University Press:  28 February 2007

Harry J. McArdle
Affiliation:
Department of Child Health, Centre for Research into Human Development, Ninewells Hospital and Medical School, Dundee DD1 9SY
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Micronutrient transport processes’
Copyright
Copyright © The Nutrition Society 1992

References

Aldred, A. R., Grimes, A., Schreiber, G. & Mercer, J. F. (1987). Rat ceruloplasmin. Molecular cloning and gene expression in liver, choroid plexus, yolk sac, placenta, and testis. Journal of Biological Chemistry 262, 28752878.CrossRefGoogle ScholarPubMed
Appleton, D. & Sarkar, B. (1971). The absence of specific copper(II)-binding site in dog albumin. Journal of Biological Chemistry 246, 50405046.CrossRefGoogle ScholarPubMed
Baker, E., McArdle, H. J. & Morgan, E. H. (1985). Transferrin-cell interactions; studies with erythroid, placental and hepatic cells. Proteins of Iron Storage and Transport, pp. 131142 [G., Spik, J., Montreuil, Crichton, R. R. and J., Mazurier, editors]. Amsterdam: Elsevier.Google Scholar
Barnea, A., Cho, G. & Hartter, D. E. (1988). A correlation between the ligand specificity for 67 copper uptake and for copper-prostaglandin E2 stimulation of the release of gonadotropin-releasing hormone from median eminence explants. Endocrinology 122, 15051510.CrossRefGoogle Scholar
Barnes, G. & Frieden, E. (1984). Ceruloplasmin receptors of erythrocytes. Biochemical and Biophysical Research Communications 125, 157162.CrossRefGoogle ScholarPubMed
Bierings, M. B. (1989). Placental iron uptake and its regulation. PhD Thesis, Erasmus University, Rotterdam.Google Scholar
Bierings, M. B., Adriaansen, H. J. & van Dijk, J. P. (1988). Transferrin receptors on cyto- and in-vitro formed syncytiotropboblast. Placenta 9, 387396.CrossRefGoogle Scholar
Bleil, J. D. & Bretscher, M. S. (1982). Transferrin receptor and its recycling in HeLa cells. EMBO Journal 1, 351355.CrossRefGoogle ScholarPubMed
Blight, G. D. & Morgan, E. H. (1987). Receptor mediated endocytosis of transferrin and femtin by guinea pig reticulocytes; uptake by a common pathway. European Journal of Cell Biology 43, 260265.Google Scholar
Booth, A. G. & Wilson, M. J. (1981). Human placental coated vesicles contain receptor-bound transferrin. Biochemical Journal 196, 355362.CrossRefGoogle ScholarPubMed
Bowen, B. J. & Morgan, E. H. (1987). Anaemia of the Belgrade rat; evidence for the defective membrane transport of iron. Blood 70, 3844.CrossRefGoogle ScholarPubMed
Breslow, E. (1964). Comparison of cupric ion binding sites in myoglobin derivatives and serum albumin. Journal of Biological Chemistry 239, 50405046.CrossRefGoogle ScholarPubMed
Calabrese, L., Carbonaro, M. & Musci, G. (1989). Presence of coupled trinuclear copper cluster in mammalian ceruloplasmin is essential for efficient electron transfer to oxygen. Journal of Biological Chemistry 264, 61836187.CrossRefGoogle ScholarPubMed
Dameron, C. T. & Harris, E. D. (1987 a). Regulation of aortic CuZn-superoxide dismutase with copper. Biochemical Journal 248, 664668.Google ScholarPubMed
Dameron, C. T. & Hams, E. D. (1987 b). Regulation of aortic CuZn-superoxide dismutase with copper. Ceruloplasmin and albumin re-activate and transfer copper to the enzyme in culture. Biochemical Journal 248, 669675.CrossRefGoogle Scholar
Danks, D. M. (1988). Copper deficiency in humans. Annual Review of Nutrition 8, 235257.CrossRefGoogle ScholarPubMed
Darwish, H. M., Cheney, J. C., Schmitt, R. C. & Ettinger, M. J. (1984). Mobilization of copper(II) from plasma components and mechiwisms of hepatic copper transport. American Journal of Physiology 246, G72G79.Google ScholarPubMed
Darwish, H. M., Hoke, J. E. & Ettinger, M. J. (1983). Kinetics of Cu(II) transport and accumulation by hepatocytes from copper-deficient mice and the brindled mouse model of Menkes’ disease. Journal of Biological Chemistry 258, 1362113626.CrossRefGoogle ScholarPubMed
Dautry-Varsat, A., Chiechanover, A. & Lodish, H. F. (1983). pH and the recycling of transferrin during receptor-mediated endocytosis. Proceedings of the National Academy of Sciences, USA 80, 22582262.CrossRefGoogle ScholarPubMed
de Jong, G., van Dijk, J. P. & van Eijk, H. G. (1990). The biology of transfemn. Clinica Chimica Acta 190, 146.CrossRefGoogle Scholar
Douglas, G. C. & King, B. F. (1990). Uptake and processing of 125I labelled transferrin and 59Fe labelled transferrin by isolated human trophoblast cells. Placenta 11, 4157.CrossRefGoogle ScholarPubMed
Frieden, E. (1980). Caeruloplasmin: a multi-functional metalloprotein of vertebrate plasma. Ciba Foundation Symposium 79, 93124.Google ScholarPubMed
Gutteridge, J. M. (1983). Antioxidant properties of caeruloplasmin towards iron- and copper-dependent oxygen radical formation. FEBS Letters 157, 3740.CrossRefGoogle ScholarPubMed
Hanover, J. A., Beguinot, L., Willingham, M. C. & Pastan, I. H. (1985). Transit of receptors for epidermal growth factor and transfemn through coated pits; analysis of the kinetics of receptor entry. Journal of Biological Chemistry 260, 1593815945.CrossRefGoogle ScholarPubMed
Harding, C., Heuser, J. & Stahl, P. (1983). Receptor mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. Journal of Cell Biology 997, 329339.CrossRefGoogle Scholar
Harris, D. I. M. & Sass-Kortsak, A. (1967). The influence of amino acids on copper uptake by rat liver slices. Journal of Clinical Investigations 46, 659677.CrossRefGoogle ScholarPubMed
Herd, S. M., Camakaris, J., Chrison, R., Wookey, P. & Danks, D. M. (1987). Uptake and efflux of copper-64 in Menkes’-disease and normal continuous lymphoid cell lines. Biochemical Journal 247, 341347.CrossRefGoogle ScholarPubMed
Herve, M. (1985). Reaction of human ceruloplasmin and anion treated ceruloplasmin with diethyldithiocarbamate. Journal of Inorganic Biochemistry 25, 121130.CrossRefGoogle ScholarPubMed
Holmberg, C. G. & Laurell, C.-B. (1947). Investigations in serum copper. I. Nature of serum copper and its relation to the iron binding protein. Acta Chemica Scandinavica 82, 944950.CrossRefGoogle Scholar
Holmberg, C. G. & Laurell, C.-B. (1948). Investigations in serum copper. II. Isolation of the copper containing protein and description of some of its properties. Acta Chemica Scandinavica 2, 550555.CrossRefGoogle Scholar
Hopkins, C. R. (1983). Intracellular routing of transferrin and transferrin receptors in epidermoid carcinoma A431 cells. Cell 35, 321330.CrossRefGoogle ScholarPubMed
Hopkins, C. R. & Trowbridge, I. S. (1983). Internalization and processing of transferrin receptor in human carcinoma A431 cells. Journal of Cell Biology 97, 508521.CrossRefGoogle ScholarPubMed
Iacopetta, B. J. & Morgan, E. H. (1983). The kinetics of transferrin endocytosis and iron uptake from transferrin by rabbit reticulocytes. Journal of Biological Chemistry 258, 91089115.CrossRefGoogle ScholarPubMed
Jandl, J. H. & Katz, J. (1963). The plasma-to-cell cycle of transfemn. Journal of Clinical Investigations 42, 314326.CrossRefGoogle Scholar
Karin, M. & Mintz, D. (1981). Receptor mediated endocytosis of transferrin in developmentally totipotent mouse teratocarcinoma stem cells. Journal of Biological Chemistry 256, 32453252.CrossRefGoogle ScholarPubMed
Katz, B. M. & Barnea, A. (1990). The ligand specificity for uptake of complexed copper-67 by brain hypothalamic tissue is a function of copper concentration and copper:ligand molar ratio. Journal of Biological Chemistry 265, 20172021.CrossRefGoogle ScholarPubMed
Lamparelli, R. D., Friedman, B. M., MacPhail, A. P., Bothwell, T. H., Phillips, J. I. & Baynes, R. D. (1989). The fate of intravenously injected tissue ferritin in pregnant guinea pigs. British Journal of Haematology 72, 100105.CrossRefGoogle ScholarPubMed
Lau, S. J. & Sarkar, B. (1971). Ternary co-ordination complex between human serum albumin, copper(II) and histidine. Journal of Biological Chemistry 246, 59385943.CrossRefGoogle Scholar
Lau, S. Y., Kruck, T. P. A. & Sarker, B. (1974). Peptide molecule mimicking the copper(II) transport site of human serum albumin. Journal of Biological Chemistry 246, 58785884.CrossRefGoogle Scholar
Laurie, S.H. & Pratt, D. E. (1986). Copper-albumin: what is its functional role? Biochemical and Biophysical Research Communications 135, 10641068.CrossRefGoogle ScholarPubMed
Linder, M. & Moor, J. (1977). Plasma ceruloplasmin: evidence for its presence in and uptake by heart and other organs of the rat. Biochimica et Biophysica Acta 499, 329336.CrossRefGoogle ScholarPubMed
Linder, M. C. (1991). Nutritional Biochemistry and Metabolism. New York: Elsevier.Google Scholar
McArdle, H. J., Douglas, A. J., Bowen, B. J. & Morgan, E. H. (1985). The mechanism of iron uptake by the rat placenta. Journal of Cellular Physiology 124, 446450.CrossRefGoogle ScholarPubMed
McArdle, H. J., Douglas, A. J. & Morgan, E. H. (1984 a). Uptake of transferrin and iron by cultured rat placental cells. Journal of Cellular Physiology 122, 405409.CrossRefGoogle Scholar
McArdle, H. J., Douglas, A. J. & Morgan, E. H. (1984 b). Transferrin binding by microvillar vesicles isolated from rat placenta. Placenta 5, 131138.CrossRefGoogle ScholarPubMed
McArdle, H. J. & Erlich, R. (1991). Copper uptake and transfer to the mouse fetus during pregnancy. Journal of Nutrition 121, 208214.CrossRefGoogle Scholar
McArdle, H. J., Gross, S. M. & Danks, D. M. (1988). Uptake of copper by mouse hepatocytes. Journal of Cellular Physiology 136, 373378.CrossRefGoogle ScholarPubMed
McArdle, H. J., Gross, S. M., Danks, D. M. & Wedd, A. G. (1990). Role of albumin's specific copper binding site in copper uptake by mouse hepatocytes. American Journal of Physiology 258, G988G991.Google ScholarPubMed
McArdle, H. J., Guthrie, J. R., Ackland, M. L. & Danks, D. M. (1987). Albumin has no role in the uptake of copper by human fibroblasts. Journal of Inorganic Biochemistry 31, 123131.CrossRefGoogle ScholarPubMed
McArdle, H. J. & van den Berg, G. J. (1991). Copper uptake by microvillar vesicles isolated from human term placenta. Journal of Physiology 438, 268P.Google Scholar
McClelland, A, Kuhn, L. C. & Ruddle, F. H. (1984). The human transferrin receptor gene: genomic organisation and the complete primary structure of the receptor deduced from a cDNA sequence. Cell 39, 267274.CrossRefGoogle ScholarPubMed
Marceau, N. & Aspin, N. (1972). Distribution of ceruloplasmin-bound 67Cu in the rat. American Journal of Physiology 222, 106112.CrossRefGoogle Scholar
Marceau, N. & Aspin, N. (1973). The intracellular distribution of the radiocopper derived from ceruloplasmin and albumin. Biochimica er Biophysica Acta 293, 338350.CrossRefGoogle Scholar
Mehra, R. K. & Bremner, I. (1983). Development of a radioimmunoassay for rat liver metallothionein-I and its application to the analysis of rat plasma and kidneys. Biochemical Journal 213, 459465.CrossRefGoogle Scholar
Messerschmidt, A. & Huber, R. (1990). The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin: modelling and structural relationships. European Journal of Biochemistry 187, 341352.CrossRefGoogle ScholarPubMed
Morgan, E. H. (1981). Transferrin; biochemistry, physiology and clinical significance. Molecular Aspects of Medicine 4, 1120.CrossRefGoogle Scholar
Morgan, E. H. & Appleton, T. C. (1969). Autoradiographic localisation of 1251-labelled transferrin in rabbit reticulocytes. Nature 223, 13711372.CrossRefGoogle Scholar
Morley, C. G. D. & Bezkorovainy, A. (1985). Cellular iron uptake from transferrin: is endocytosis the only mechanism? International Journal of Biochemistry 17, 553564.CrossRefGoogle ScholarPubMed
Musgrove, E., Rugg, C., Taylor, I. & Hedley, D. (1984). Transferrin receptor expression during exponential and plateau phase growth of human tumour cells in culture. Journal of Cellular Physiology 118, 612.CrossRefGoogle ScholarPubMed
Neumann, P. Z. & Sass-Kortsak, A. (1967). The state of copper in human serum; evidence for an amino acids bound fraction. Journal of Clinical Investigations 46, 646660.CrossRefGoogle ScholarPubMed
Omary, M. B. & Trowbridge, I. S. (1981). Biosynthesis of the human transferrin receptor in cultured cells. Journal of Biological Chemistry 256, 1288812892.CrossRefGoogle ScholarPubMed
Orena, S. J., Goode, C. A. & Linder, M. C. (1986). Binding and uptake of copper from ceruloplasmin. Biochemical and Biophysical Research Communications 139, 822829.CrossRefGoogle ScholarPubMed
Owen, C. A. J. (1980). Copper and hepatic function. Ciba Foundation Symposium 79, 267282.Google ScholarPubMed
Page, M. A., Baker, E. & Morgan, E. H. (1984). Transferrin and iron uptake by primary cultures of rat liver cells. American Journal of Physiology 246, G26G33.Google Scholar
Paterson, S., Armstrong, N., Iacopetta, B. J., McArdle, H. J. & Morgan, E. H. (1984). Intravesicular pH and iron uptake by immature erythroid cells. Journal of Cellular Physiology 120, 225232.CrossRefGoogle ScholarPubMed
Pearse, B. M. F. (1982). Coated vesicles from human placenta carry ferritin, transferrin and immunoglobulin G. Proceedings of the National Academy of Sciences, USA 79, 451455.CrossRefGoogle ScholarPubMed
Percival, S. S. & Harris, E. D. (1988). Specific binding of ceruloplasmin to K562 cells. Journal of Trace Elements in Experimental Medicine 1, 6370.Google Scholar
Percival, S. S. & Harris, E. D. (1989). Ascorbate enhances copper transport from ceruloplasmin into human K562 cells. Journal of Nutrition 119, 719784.CrossRefGoogle ScholarPubMed
Rakhit, G. & Sarkar, B. (1981). Electron spin resonance study of the copper (II) complexes of human and dog serum albumins and some peptide analogs. Journal of Inorganic Biochemistry 15, 233241.CrossRefGoogle ScholarPubMed
Rao, K., van Renswoude, J., Kempf, C. & Klausner, R. D. (1983). Separation of Fe(III) from transferrin in endocytosis. Role of the acidic endosome. FEBS Letters 160, 213216.CrossRefGoogle Scholar
Saenko, E. L. & Yaropolov, A. I. (1990). Studies on receptor interaction of ceruloplasmin with red blood cells. Biochemistry International 20, 215225.Google ScholarPubMed
Schmitt, R. C., Darwish, H. M., Cheney, J. C. & Ettinger, M. J. (1983). Copper transport kinetics by isolated rat hepatocytes. American Journal of Physiology 244, G183G191.Google ScholarPubMed
Stevens, M. D., Di Silvestro, R. A. & Harris, E. D. (1984). Specific receptor for ceruloplasmin in membrane fragments from aortic and heart tissues. Biochemistry 23, 261266.CrossRefGoogle ScholarPubMed
Sun, I. L., Navas, P., Crane, F. L., Morro, D. J. & Low, H. (1987). NADH diferric transferrin reductase in liver plasma membrane. Journal of Biological Chemistry 262, 1591515921.CrossRefGoogle ScholarPubMed
Trinder, D., Batey, R. G., Morgan, E. H. &Baker, E. (1990). Effect of cellular iron concentration on iron uptake by hepatocytes. American Journal of Physiology 259, G611LG617.Google ScholarPubMed
Trowbridge, I. S. & Omary, M. B. (1981). Human cell surface glycoprotein related to cell proliferation is the receptor for transferrin. Proceedings of the National Academy of Sciences, USA 78, 30393043.CrossRefGoogle ScholarPubMed
Turkewitz, A. P., Schwartz, A. L. & Marrison, A. C. (1988). A pH dependent reversible conformation transition of the human transferrin receptor leads to self-association. Journal of Biological Chemistry 263, 16091615.CrossRefGoogle Scholar
van den Berg, G. J., Kroon, J. J., Wijburg, F. A., Sinjorge, K. M. C., Herzberg, N. H. & Bolhuis, P. A. (1990 a). Muscle cell cultures in Menkes’ disease; copper accumulation in myotubes. Journal of Inherited Metabolic Diseases 13, 207211.CrossRefGoogle ScholarPubMed
van den Berg, G. J. &van der Hamer, C. J. A. (1984). Trace metal uptake in liver cells. 1. Influence of albumin in the medium on the uptake of copper by hepatoma cells. Journal of Inorganic Biochemistry 22, 7384.CrossRefGoogle ScholarPubMed
van den Berg, G. J., van Wouwe, J. P. & Beynen, A. C. (1990 b). Ascorbic acid supplementation and copper status in rats. Biological Trace Element Research 23, 165172.CrossRefGoogle Scholar
van Renswoude, J., Bridges, K. R., Harford, J. B. & Klausner, R. D. (1982). Receptor mediated endocytosis of transferrin and uptake of iron in K562 cells. Identification of a non-lysosomal compartment. Proceedings of the National Academy of Sciences, USA 79, 61866190.CrossRefGoogle Scholar
Weiner, A. L. & Cousins, R. J. (1980). Copper accumulation and metabolism in primary monolayer culture of rat liver parenchymal cells. Biochimica et Biophysica Acta 629, 113125.CrossRefGoogle ScholarPubMed
Weiner, A. L. & Cousins, R. J. (1983). Hormonally produced changes in caeruloplasmin synthesis and secretion in primary cultured rat hepatocytes. Relationship to hepatic copper metabolism. Biochemical Journal 212, 297304.CrossRefGoogle ScholarPubMed
Weiss, K. C. & Linder, M. C. (1985). Copper transport in rats involving a new transport protein. American Journal of Physiology 249, E77E88.Google Scholar
Wiley, H. S. & Kaplan, J. (1984). Epidermal growth factor rapidly induces a redistribution of transferrin receptor pools in human fibroblasts. Proceedings of the National Academy of Sciences, USA 81, 74567460.CrossRefGoogle ScholarPubMed
Winyard, P. G., Hider, R. C., Brailsford, S., Drake, A. F., Lunec, J. & Blake, D. R. (1989). Effects of oxidative stress on some physiochemical properties of caeruloplasmin. Biochemical Journal 258, 435445.CrossRefGoogle ScholarPubMed
Wirth, P. L. & Linder, M. C. (1985). Distribution of copper among components of human serum. Journal of the National Cancer Institute 15. 277284.Google Scholar
Wong, C. T., McArdle, H. J. & Morgan, E. H. (1987). Effect of iron chelators on placental uptake and transfer of iron in the rat. American Journal of Physiology 252, C477C482.CrossRefGoogle Scholar