Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-20T01:02:37.288Z Has data issue: false hasContentIssue false

Nutritional supply of proteins and absorption of their hydrolysis products: consequences on metabolism

Published online by Cambridge University Press:  28 February 2007

Alain A. Rérat
Affiliation:
Batiment 405, CRJ-INRA, 78350 Jouy-en-Josas, France
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘The digestive tract in nutritional adaptation’
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Abumrad, N. N., Williams, P., Frexes-Steed, M., Geer, R., Flakoll, P., Cercosimo, E., Brown, L. L., Melki, I., Bulus, N., Hourani, H., Hubbard, M. & Ghishan, F. (1989). Inter-organ metabolism of aminoacids in vivo. Diabetes/Metabolism Reviews 5, 213226.CrossRefGoogle ScholarPubMed
Arsac, M. & Rérat, A. (1962). Technique de fistulation de la veine porte chez le porc (Technique for fistulation of the portal vein in the pig). Annales de Biologie Animale, Biochimie, Biophysique 2, 335343.CrossRefGoogle Scholar
Barrett, E. J., Gusberg, R., Ferrannini, E., Tepler, J., Felig, P., Jacob, R., Smith, D. & De Fronzo, R. A. (1986). Amino acid and glucose metabolism in the postabsorptive state and following amino acid ingestion in the dog. Metabolism, Clinical and Experimental 35, 709717.CrossRefGoogle ScholarPubMed
Block, R. J. & Mitchell, H. H. (1946). The correlation of the amino-acid composition of proteins with their nutritive value. Nutrition Abstracts and Reviews 16, 249278.Google Scholar
Bloomgarden, Z. T., Liljenquist, J., Lacy, W. & Rabin, D. (1981). Amino acid disposition by liver and gastrointestinal tract after protein and glucose ingestion. American Journal of Physiology 241, E90E99.Google ScholarPubMed
Chang, T. W. & Goldberg, A. L. (1978). The metabolic fates of aminoacids and the formation of glutamine in the skeletal muscle. Journal of Biological Chemistry 253, 36773684.CrossRefGoogle Scholar
Christensen, H. N. (1963). Amino acid transport and nutrition. Federation Proceedings 22, 11101114.Google ScholarPubMed
Dawson, R. & Porter, J. W. G. (1962). An investigation into protein digestion with 14C-labelled protein. 2. The transport of 14C-labelled nitrogenous compounds in the rat and cat. British Journal of Nutrition 16, 2738.CrossRefGoogle ScholarPubMed
Elwyn, D. H. (1970). The role of the liver in regulation of aminoacid and protein metabolism. In Mammalian Protein Metabolism, vol. 4, pp. 523557 [Munro, H. N. editor]. New York and London: Academic Press.CrossRefGoogle Scholar
Elwyn, D. H., Parikh, H. C. & Shoemaker, W. C. (1968). Aminoacid movements between gut, liver and periphery in unanesthetized dogs. American Journal of Physiology 215, 12601275.CrossRefGoogle ScholarPubMed
Fauconneau, G. & Michel, M. C. (1970). The role of the gastrointestinal tract in the regulation of protein metabolism. In Mammalian Protein Metabolism, vol. 4, pp. 481522 [Munro, H. N. editor]. New York and London: Academic Press.CrossRefGoogle Scholar
Ferrannini, E., De Fronzo, R. A., Gusberg, R., Tepler, J., Jacob, R., Aaron, M., Smith, D. & Barrett, E. J. (1988). Splanchnic aminoacid and glucose metabolism during aminoacid infusion in dogs. Diabetes 37, 227245.CrossRefGoogle ScholarPubMed
Galim, E. B., Hruska, K., Bier, D. M., Matthews, D. E. & Haymond, M. W. (1980). Branched chain amino acid nitrogen transfer to alanine in dogs: Direct isotopic determination with [15N]-leucine. Journal of Clinical Investigation 66, 12951304.CrossRefGoogle ScholarPubMed
Geiger, E. (1950). The role of time factor in protein synthesis. Science 111, 594599.CrossRefGoogle ScholarPubMed
Gelfand, R. A., Glickman, M. G., Jacob, R., Sherwin, R. S. & De Fronzo, R. A. (1986). Removal of infused aminoacids by splanchnic and leg tissues in humans. American Journal of Physiology 250, E407E413.Google ScholarPubMed
Giusi-Perier, A., Fiszlewicz, M. & Rérat, A. (1989). Influence of diet composition on intestinal volatile fatty acids and nutrient absorption in unanesthetized pigs. Journal of Animal Science 67, 386402.CrossRefGoogle ScholarPubMed
Grimble, K. G. & Silk, D. A. (1989). Peptides in human nutrition. Nutrition Research Reviews 2, 87108.CrossRefGoogle ScholarPubMed
Harper, A. E., Miller, R. H. & Block, K. P. (1984). Branched chain aminoacid metabolism. Annual Review of Nutrition 4, 409454.CrossRefGoogle Scholar
Krebs, H. A. & Lund, P. (1977). Aspects of the regulation of the metabolism of branched-chain aminoacids. Advances in Enzyme Regulation 15, 375394.CrossRefGoogle Scholar
Mallette, L. E., Exton, J. H. & Park, C. R. (1969). Control of gluconeogenesis from aminoacids in the perfused rat liver. Journal of Biological Chemistry 244, 57135723.CrossRefGoogle Scholar
Monchi, M. & Rérat, A. (1993). Net protein utilization of milk protein mild enzymatic hydrolysates and free amino acids mixtures with the same pattern in the rat. Journal of Parenteral and Enteral Nutrition. (In the Press).CrossRefGoogle ScholarPubMed
Munck, B. G. (1981). Intestinal absorption of amino acids. In Physiology of the Gastrointestinal Tract, vol. 2, pp. 10971122 [Johnson, L. R. editor]. New York: Raven Press.Google Scholar
Pion, R., Fauconneau, G. & Rérat, A. (1964). Variations de la composition en acides aminés du sang porte au cours de la digestion chez le porc. (Variations in the amino acid composition of the portal blood during digestion in the pig). Annales de Biologie Animale. Biochimie, Biophysique 4, 383401.CrossRefGoogle Scholar
Rérat, A. (1971). Mise au point d'une méthode quantitative d'étude de l'absorption chez le porc. (Quantitative method for studying the digestive absorption in the pig). Annales de Biologie Animale. Biochimie, Biophysique 11, 277279.CrossRefGoogle Scholar
Rérat, A. (1986). Utilisation de l'azote des aliments produits par les biotechnologies: cinétique d'absorption, métabolisation et sécrétion d'hormones pancréatiques après perfusion duodénale d'hydrolysats de protéines laitières chez le porc éveillé. (Utilization of nitrogen from foods produced by biotechnologies: kinetics of absorption and metabolism of nutrients and secretion of pancreatic hormones after duodenal infusion of enzymatic hydrolysates of milk proteins in the conscious pig). In Food and Biotechnology, Proceedings of the International Symposium, pp. 215242 [de la Noue, J. Goulet, J. and Amiot, J., editors]. Québec: Université Laval.Google Scholar
Rèrat, A. (1988). Experimental results on gut physiology and absorption as related to amino-acid nutrition and metabolism. Roche Research Prize for Animal Nutrition, p. 71. Basel: Roche Animal Nutrition and Health.Google Scholar
Rérat, A. & Bourdon, D. (1975). Supplémentation retardée à l'aide de lysine industrielle d'une régime déficient en cet acide aminé (Asynchronous supplementation using industrial lysine of a diet deficient in this amino acid). Journées de la Recherche Porcine en France 7, 2735.Google Scholar
Rérat, A., Chayvialle, A., Kandé, J., Vaissade, P., Vaugelade, P. & Bourrier, T. (1985 a). Metabolic and hormonal effects of test meals with various protein contents in pigs. Canadian Journal of Physiology and Pharmacology 63, 15471559.CrossRefGoogle ScholarPubMed
Rérat, A., Jung, J. & Kandé, J. (1988 a). Absorption kinetics of dietary hydrolysis products in conscious pigs given diets with different amounts of fish protein. 2. Individual amino acids. British Journal of Nutrition 60, 105120.CrossRefGoogle ScholarPubMed
Rérat, A., Simoes-Nunes, C., Lacroix, M., Vaugelade, P. & Vaissade, P. (1985 b). Cinétique comparée d'apparition dans la veine porte de l'azote αaminé provenant de mélanges de petits peptides ou d'acides aminés libres de même composition introduits dans le duodénum chez le porc éveillé (Comparative quantitative intestinal absorption of amino acid mixtures of the same composition offered either in free form or as an enzymatic hydrolysate of milk proteins to conscious pigs). Compte-rendus de l'Académie des Sciences, Paris 300, 293296.Google Scholar
Rérat, A., Simoes-Nunes, C., Mendy, F. & Roger, L. (1988 b). Amino acid absorption and production of pancreatic hormones in non-anaesthetized pigs after duodenal infusions of milk enzymatic hydrolysate or free amino acids. British Journal of Nutrition 60, 121136.CrossRefGoogle ScholarPubMed
Rérat, A., Simoes-Nunes, C., Mendy, F., Vaissade, P. & Vaugelade, P. (1992). Splanchnic fluxes of aminoacids after duodenal infusion of carbohydrate solutions containing free aminoacids or oligopeptides in the non-anaesthetized pig. British Journal of Nutrition 68, 111138.CrossRefGoogle ScholarPubMed
Rérat, A., Simoes-Nunes, C., Vaissade, P. & Vaugelade, P. (1990). Intestinal absorption of amino acids coming from small peptides or free amino acid solutions infused in the conscious pig duodenum, in the presence of carbohydrates. Reproduction Nutrition Development 30, 136 Abstr.CrossRefGoogle Scholar
Rérat, A., Vaugelade, P. & Villiers, P. A. (1980). A new method for measuring the absorption of nutrients in the pigs: critical examination. In Current Concepts of Digestion and Absorption in Pigs. Technical Bulletin no. 3, pp. 177216 [Low, A. G. and Partridge, I. G., editors]. Reading/Ayr: National Institute for Research in Dairying/Hannah Research Institute.Google Scholar
Simoes-Nunes, C., Rérat, A., Galibois, I., Vaugelade, P. & Vaissade, P. (1989). Hepatic and gut balances of glucose, amino-nitrogen, ammonia and urea in the pig after ingestion of casein or rapeseed proteins. Nutrition Reports International 40, 901907.Google Scholar
Simoes-Nunes, C., Rérat, A., Vaugelade, P. & Vaissade, P. (1985). Simultaneous quantitative study of intestinal absorption and hepatic metabolisation in the conscious pig. Development and interest of the technique. Diabete & Metabolism 10, 349 Abstr.Google Scholar
Van Slyke, D. D. & Meyer, G. M. (1912). The amino nitrogen in the blood. Preliminary experiments on protein assimilation. Journal of Biological Chemistry 12, 399410.CrossRefGoogle Scholar
Wahren, J., Felig, P. & Hagenfeldt, L. (1976). Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. Journal of Clinical Investigation 57, 987999.CrossRefGoogle ScholarPubMed
Welbourne, T., Weber, M. & Bank, N. (1972). The effect of glutamine administration on urinary ammonium excretion in normal subjects and patients with renal disease. Journal of Clinical Investigation 51, 18521860.CrossRefGoogle ScholarPubMed
Windmueller, H. G. & Spaeth, A. E. (1975). Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Archives of Biochemistry and Biophysics 171, 662672.CrossRefGoogle ScholarPubMed
Windmueller, H. G. & Spaeth, A. E. (1980). Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats. Journal of Biological Chemistry 225, 107112.CrossRefGoogle Scholar