Skip to main content Accessibility help
×
Home

New perspectives on the use of tropical plants to improve ruminant nutrition

  • B. Teferedegne (a1)

Abstract

Inadequate nutrition is the main cause of low productivity by ruminants in sub-Saharan Africa. The primary feed resources in the region include natural pasture and crop residues that have tough texture, poor digestibility and are deficient in nutrients. These deficiencies can be corrected by supplementation with high-density feeds such as oilseed cakes and proteins of animal origin. However, protein sources such as oilseed cakes are beyond the economic reach of most farmers, while the incidence of bovine spongiform encephalopathy in Western intensive animal production may be thought to argue against the use of animal proteins. Local tree legumes have been investigated as potential supplements for ruminants because of their beneficial effect of increasing metabolizable energy intake, N intake and feed efficiency, and improving animal performance. However, our work has suggested that some plant materials may have a nutritional value beyond simply their nutrient content, i.e. as rumen-manipulating agents. The foliage of some tree legumes has been shown to be selectively toxic to rumen protozoa. Rumen protozoa ingest and digest bacteria and fungi, degrading their cellular protein to NH3. Microbial protein turnover due to protozoal predation in the rumen may result in the net microbial protein outflow being less than half the total protein synthesized. Results from in vivo experiments have clearly shown that duodenal flow of both undegraded dietary and bacterial protein is generally increased by defaunation. However, no practical method has been developed to date to eliminate protozoa. Anti-protozoal plants may be promising, safe, natural defaunating agents.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      New perspectives on the use of tropical plants to improve ruminant nutrition
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      New perspectives on the use of tropical plants to improve ruminant nutrition
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      New perspectives on the use of tropical plants to improve ruminant nutrition
      Available formats
      ×

Copyright

Corresponding author

Corresponding author: Belete Teferedegne, fax +44(0)1224 716687, email bt@rri.sari.ac.uk

References

Hide All
Ahn, JH, Robertson, BM, Elliott, R, Gutteridge, RC & Ford, CW (1989) Quality assessment of tropical browse legumes: Tannin content and protein degradation. Animal Feed Science and Technology 27, 147156.
Austin, PJ, Suchar, LA, Robbins, CT & Hagerman, AE (1989) Tannin-binding proteins in saliva of deer and their absence in saliva of sheep and cattle. Journal of Chemical Ecology 15, 13351347.
Barry, TN & McNabb, WC (1999) The implication of condensed tannins on the nutritive value of temperate forages fed to ruminants. British Journal of Nutrition 81, 263272.
Bird, S & Seccombe, M (1998) A comparative study of faunated lambs and lambs reared from birth free of ciliate protozoa. Animal Production in Australia 22, 391A.
Bird, SH, Hill, MK & Leng, RA (1979) The effect of defaunation of the rumen on the growth of lambs on low-quality high-energy diets. British Journal of Nutrition 42, 8187.
Bird, SH & Leng, RA (1984) Further studies on the effects of the presence or absence of protozoa in the rumen on live weight gain and wool growth of sheep. British Journal of Nutrition 52, 607611.
Bonsi, MLK, Osuji, PO, Nsahlai, IV & Tuah, AK (1994) Graded levels of Sesbania sesban and Leucaena leucocephala as supplements to teff straw given to Ethiopian Menze sheep. Animal Production 59, 235244.
Cheeke, PR (1996) Biological effects of feed and forage saponins and their impacts on animal production. Advanced Experimental Biology 405, 377385.
Cheeke, PR (1998) Natural Toxicants in Feeds, Forages and Poisonous Plants. Danville, IL: Interstate Publishers.
Diaz, A, Avendan, OM & Escobar, A (1994) Evaluation of Spinadus saponaria as a defaunating agent and its effects on different ruminal digestion parameters. Livestock Research in Rural Development 5, 110.
Freeland, WJ, Calcott, PH & Anderson, LR (1985) Tannins and saponins: Interaction in herbivore diets. Biochemical Systematic and Ecology 13, 189193.
Goll, PH, Lemma, A, Duncan, J & Mazengia, B (1983) Control of schistosomiasis in Adewa, Ethiopia, using the plant Molluscicide endod (Phytolacca dodecandra). Tropenmedzin und Parasitologie 34, 177183.
Hagerman, AE & Butler, LG (1981) The specificity of proanthocyanidin-protein interactions. Journal of Biological Chemistry 256, 44944497.
Hagerman, AE & Robbins, CT (1993) Specificity of tannin-binding salivary proteins relative to diet selection in mammals. Canadian Journal of Zoology 71, 628633.
Headon, DR (1991) Glycofractions of the yucca plant and their role in ammonia control. In Biotechnology in the Feed Industry. Proceedings of 7th Alltech Symposium, pp. 95108.Nicholasville, KY: Alltech Technical Publications.
House of Lords (1998) Resistance to Antibiotics and Other Antimicrobial Agents. Select Committee Report on Science and Technology, HL paper no. 81–I. London: The Stationery Office.
Jouany, JP & Senaud, J (1979) Defaunation du rumen de mouton (Defaunation of sheep rumen). Annales de Biologie Animalle Biochimie Biophysique 19, 619624.
Kass, M, Benavides, J, Romero, F & Pezo, D (1992) Lessons from main feeding experiments conducted in CATIE using fodder trees as part of the N-ration. In Legume Trees and Other Fodder Trees as Protein Sources for Livestock, Vol. 102, pp. 161176 [Speedy, A & Pugliese, PL, editors]. Rome: FAO.
Kellerman, TS, Erasmus, GL, Coetzer, JAW, Brown, JMM & Maartens, BP (1991) Photosensitivity in South Africa. VI. The experimental induction of geeldikkop in sheep with crude steroidal saponins from Tribulus terrestris. Onderstepoort Journal of Veterinary Research 58, 4753.
Kiatho, RJ (1997) Nutritive value of browses as protein supplement(s) to poor quality roughages. PhD Thesis, University of Wageningen.
Kilta, PT, Mathison, GW & Fenton, TW (1996) Effect of alfalfa root saponins on digestive function in sheep. Journal of Animal Science 74, 11441156.
Kumar, R (1992) Anti-nutritional factors, the potential risks of toxicity and methods to alleviate them. In Legume Trees and Other Fodder Trees as Protein Sources for Livestock, Vol. 102, pp. 145160 [Speedy, A & Pugliese, PL, editors]. Rome: FAO.
Lemma, A (1970) Laboratory and field evaluation of the molluscicidal properties of Phytolacca dodecandra. Bulletin of the World Health Organization 42, 597612.
Leng, RA, Bird, SH, Klieve, A, Choo, BS, Ball, FM, Asefa, G, Brumby, P, Mudgal, VD, Chaudhry, UB, Haryono, SU & Hendratno, N (1992) The potential for tree forage supplements to manipulate rumen protozoa to enhance protein to energy ratios in ruminants fed on poor quality forages. In Legume Trees and Other Fodder Trees as Protein Sources for Livestock, Vol. 102, pp. 177191 [Speedy, A & Pugliese, PL, editors]. Rome: FAO.
Lu, CD & Jorgensen, NA (1987) Alfalfa saponins affect site and extent of nutrient digestion in ruminants. Journal of Nutrition 117, 919927.
McKell, CM (1980) Multiple use of fodder trees and shrubs – a world wide perspective. In Browse in Africa: The Current State of Knowledge, pp. 141149 [Le Houerou, HN, editor]. Addis Ababa, Ethiopia: International Livestock Research Centre for Africa.
Makkar, HPS & Becker, K (1997) Degradation of quillaja saponins by mixed culture of rumen microbes. Letters of Applied Microbiology 25, 243245.
Mangan, JL (1988) Nutritional effects of tannins in animal feeds. Nutritional Research Reviews 1, 209231.
Miles, CO, Mundy, SC, Holland, PT, Smith, BL, Embling, PP & Wilkins, (1991) Identification of sapogenin glucuronide in the bile of sheep affected by Panicum dichotomiflorum toxicosis. New Zealand Veterinary Journal 39, 150152.
Miles, CO, Wilkins, AL, Mundy, SC, Holland, PT, Smith, BL, Lancaster, MJ & Embling, PP (1992) Identification of the calcium salt of epismilagenin β-D-glucuronide in the bile crystal of sheep affected by Panicum dichotomiflorum and Panicum schinzii toxicosis. Journal of Agricultural and Food Chemistry 40, 16061609.
Navas-Camach, A, Laredo, MA, Cuesta, A, Anzola, H & Leon, JC (1993) Effect of supplementation with a tree legume forage on rumen function. Livestock Research for Rural Development 5, 5871.
Newbold, CJ & Chamberlain, DG (1988) Lipids as rumen defaunating agents. Proceedings of the Nutrition Society 47, 154A.
Newbold, CJ, El Hassan, SM, Wang, J, Ortega, ME & Wallace, RJ (1997) Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria. British Journal of Nutrition 78, 237249.
Newman, K (1997) Herbs and spices: their role in modern livestock production. In Biotechnology in the Feed Industry, pp. 217224 [Lyons, TP & Jacques, KA, editors]. Nottingham: Nottingham University Press.
Nolan, JV & Stachiw, S (1979) Fermentation and nitrogen dynamics in Merino sheep given a low-quality-roughage diet. British Journal of Nutrition 42, 6379.
Norton, BW (1994) Tree legumes as dietary supplements. In Forage Tree Legumes in Tropical Agriculture, pp. 192201 [Gutteridge, RC & Shelton, HM, editors]. Wallingford, Oxon: CAB International.
Odenyo, AA, Osuji, PO & Karanfil, O (1997) Effect of multipurpose tree (MPT) supplements on ruminal ciliate protozoa. Animal Feed Science and Technology 67, 169180.
Ørskov, ER (1993) Reality in Rural Development Aid with Emphasis on Livestock. Aberdeen: Skeneprint Limited.
Osuji, PO, Fernandez-Rivera, S & Odenyo, A (1995) Improving fibre utilisation and protein supply in animals fed poor quality roughages: ILRI nutrition research and plans. In Rumen Ecology Research Planning. Proceedings of a Workshop Held at ILRI Addis Ababa, 1995, pp. 122 [Wallace, RJ & Lahlou-Kassi, A, editors]. Addis Ababa, Ethiopia: ILRI.
Reed, JD (1995) Nutritional toxicology of tannins and related polyphenols in forage legumes. Journal of Animal Science 73, 15161528.
Reed, JD, Soller, H & Woodward, A (1990) Fodder tree and straw diets for sheep: intake, growth, digestibility and the effects of phenolics on nitrogen utilisation. Animal Feed Science and Technology 30, 3950.
Robbins, CT, Hanley, TA, Hagerman, AE, Hjeljord, O, Baker, DL, Schwartz, CC & Mautz, WW (1987) Role of tannins in defending plants against ruminants: reduction in protein availability. Ecology 68, 98107.
Salem, HB, Nefzaoui, , Salem, LB & Tisserand, JL (1999) Different means of administering polyethylene glycol to sheep: effect on the nutritive value of Acacia cyanophylla Lindl. foliage. Animal Science 68, 809818.
Teferedegne, B, McIntosh, F, Osuji, PO, Odenyo, A, Wallace, RJ & Newbold, CJ (1999) Influence of foliage from different accessions of the sub-tropical leguminous tree, Sesbania sesban, on ruminal protozoa in Ethiopia and Scottish sheep. Animal Feed Science and Technology 78, 1120.
Teferedegne, B, Osuji, PO, Odenyo, A, Wallace, RJ & Newbold, CJ (1998) Influence of saponins/sapogenins on the bacteriolytic activity of ciliate protozoa from the sheep rumen. Proceedings of the British Society of Animal Science 122Abstr.
Thalib, A, Widiawati, Y, Hamid, H, Suherman, D & Sabrani, M (1995) The effect of saponins from Spinadus rarak fruit on rumen microbes and host animal growth. Annales de Zootechnie 44, 161Abstr.
Umunna, NN, Osuji, PO, Nsahlai, IV, Khalili, H & Saleem, MA (1995) The effect of supplementing oat hay with either lablab, sesbania, tagasaste or wheat middlings on the voluntary intake, nitrogen utilisation and live weight gain of Ethiopian menze sheep. Small Ruminant Research 18, 113120.
Van Soest, P (1994) Nutritional Ecology of the Ruminant, 2nd ed. New York: Cornell University Press.
Wallace, RJ, Arthaud, L & Newbold, CJ (1994) Influence of Yucca schidigera extract on ruminal ammonia concentrations and ruminal microorganisms. Applied Environmental and Microbiology 60, 17621767.
Wallace, RJ & McPherson, CA (1987) Factors affecting the rate of breakdown of bacterial protein in rumen fluid. British Journal of Nutrition 58, 313323.
Wang, Y, McAllister, TA, Newbold, CJ, Rode, LM, Cheeke, PR & Cheng, KJ (1998) Effects of Yucca schidigera extract on fermentation and degradation of steroidal saponins in the rumen simulation technique (RUSITEC). Animal Feed Science and Technology 74, 143153.
Williams, AG & Coleman, GS (1992) The Rumen Protozoa. London: Springer-Verlag.
Williams, AG & Coleman, GS (1997) The rumen protozoa. In The Rumen Microbial Ecosystem, pp. 73139 [Hobson, PN & Stewart, CS, editors]. London: Blackie Academic & Professional.
Williams, PP & Dinusson, WE (1973) Ruminal volatile acid concentrations and weight gains of calves reared with and without ruminal ciliate protozoa. Journal of Animal Science 36, 588591.

Keywords

New perspectives on the use of tropical plants to improve ruminant nutrition

  • B. Teferedegne (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed