Skip to main content Accessibility help

The neurobiology of food intake in an obesogenic environment

  • Hans-Rudolf Berthoud (a1)


The objective of this non-systematic review of the literature is to highlight some of the neural systems and pathways that are affected by the various intake-promoting aspects of the modern food environment and explore potential modes of interaction between core systems such as hypothalamus and brainstem primarily receptive to internal signals of fuel availability and forebrain areas such as the cortex, amygdala and meso-corticolimbic dopamine system, primarily processing external signals. The modern lifestyle with its drastic changes in the way we eat and move puts pressure on the homoeostatic system responsible for the regulation of body weight, which has led to an increase in overweight and obesity. The power of food cues targeting susceptible emotions and cognitive brain functions, particularly of children and adolescents, is increasingly exploited by modern neuromarketing tools. Increased intake of energy-dense foods high in fat and sugar is not only adding more energy, but may also corrupt neural functions of brain systems involved in nutrient sensing as well as in hedonic, motivational and cognitive processing. It is concluded that only long-term prospective studies in human subjects and animal models with the capacity to demonstrate sustained over-eating and development of obesity are necessary to identify the critical environmental factors as well as the underlying neural systems involved. Insights from these studies and from modern neuromarketing research should be increasingly used to promote consumption of healthy foods.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The neurobiology of food intake in an obesogenic environment
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The neurobiology of food intake in an obesogenic environment
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The neurobiology of food intake in an obesogenic environment
      Available formats


Corresponding author

Corresponding author: Hans-Rudolf Berthoud, fax +1 225 763 0260, email


Hide All
1. Guyenet, SJ & Schwartz, MW (2012) Clinical review + #: regulation of food intake, energy balance, and body fat mass: implications for the pathogenesis and treatment of obesity. J Clin Endocrinol Metab 97, 745755.
2. Farooqi, S & O'Rahilly, S (2006) Genetics of obesity in humans. Endocr Rev 27, 710718.
3. Bouchard, C (1995) Genetics of obesity: an update on molecular markers. Int J Obes Relat Metab Disord 19, Suppl. 3, S10S13.
4. Speakman, JR (2008) Thrifty genes for obesity, an attractive but flawed idea, and an alternative perspective: the ‘drifty gene’ hypothesis. Int J Obes (Lond) 32, 16111617.
5. Harris, RB (1990) Role of set-point theory in regulation of body weight. FASEB J 4, 33103318.
6. Hall, KD, Heymsfield, SB, Kemnitz, JW et al. (2012) Energy balance and its components: implications for body weight regulation. Am J Clin Nutr 95, 989994.
7. Speakman, JR, Levitsky, DA, Allison, DB et al. (2011) Set points, settling points and some alternative models: theoretical options to understand how genes and environments combine to regulate body adiposity. Dis Model Mech 4, 733745.
8. Grill, HJ & Kaplan, JM (2002) The neuroanatomical axis for control of energy balance. Front Neuroendocrinol 23, 240.
9. Berthoud, HR (2002) Multiple neural systems controlling food intake and body weight. Neurosci Biobehav Rev 26, 393428.
10. Berthoud, HR (2004) Mind versus metabolism in the control of food intake and energy balance. Physiol Behav 81, 781793.
11. Berthoud, HR & Morrison, C (2008) The brain, appetite, and obesity. Annu Rev Psychol 59, 5592.
12. Berthoud, HR (2011) Metabolic and hedonic drives in the neural control of appetite: who is the boss? Curr Opin Neurobiol 21, 888896.
13. Jones, SC, Mannino, N & Green, J (2010) ‘Like me, want me, buy me, eat me’: relationship-building marketing communications in children's magazines. Public Health Nutr 13, 21112118.
14. Levitsky, DA & Pacanowski, CR (2011) Free will and the obesity epidemic. Public Health Nutr 19, 116.
15. Effertz, T & Wilcke, AC (2011) Do television food commercials target children in Germany? Public Health Nutr 14, 18.
16. Powell, LM, Szczypka, G & Chaloupka, FJ (2010) Trends in exposure to television food advertisements among children and adolescents in the United States. Arch Pediatr Adolesc Med 164, 794802.
17. Mink, M, Evans, A, Moore, CG et al. (2010) Nutritional imbalance endorsed by televised food advertisements. J Am Diet Assoc 110, 904910.
18. Pettigrew, S, Roberts, M, Chapman, K et al. (2012) The use of negative themes in television food advertising. Appetite 58, 496503.
19. Boyland, EJ, Harrold, JA, Kirkham, TC et al. (2012) Persuasive techniques used in television advertisements to market foods to UK children. Appetite 58, 658664.
20. Hebden, L, King, L & Kelly, B (2011) Art of persuasion: an analysis of techniques used to market foods to children. J Paediatr Child Health 47, 776782.
21. Speers, SE, Harris, JL & Schwartz, MB (2011) Child and adolescent exposure to food and beverage brand appearances during prime-time television programming. Am J Prev Med 41, 291296.
22. de Droog, SM, Valkenburg, PM & Buijzen, M (2011) Using brand characters to promote young children's liking of and purchase requests for fruit. J Health Commun 16, 7989.
23. Corsini, N, Slater, A, Harrison, A et al. (2011) Rewards can be used effectively with repeated exposure to increase liking of vegetables in 4–6-year-old children. Public Health Nutr 7, 110.
24. Weingarten, HP (1983) Conditioned cues elicit feeding in sated rats: a role for learning in meal initiation. Science 220, 431433.
25. Petrovich, GD, Setlow, B, Holland, PC et al. (2002) Amygdalo-hypothalamic circuit allows learned cues to override satiety and promote eating. J Neurosci 22, 87488753.
26. Petrovich, GD, Holland, PC & Gallagher, M (2005) Amygdalar and prefrontal pathways to the lateral hypothalamus are activated by a learned cue that stimulates eating. J Neurosci 25, 82958302.
27. Petrovich, GD, Ross, CA, Holland, PC et al. (2007) Medial prefrontal cortex is necessary for an appetitive contextual conditioned stimulus to promote eating in sated rats. J Neurosci 27, 64366441.
28. Zheng, H, Patterson, LM & Berthoud, HR (2007) Orexin signaling in the ventral tegmental area is required for high-fat appetite induced by opioid stimulation of the nucleus accumbens. J Neurosci 27, 1107511082.
29. Liedtke, WB, McKinley, MJ, Walker, LL et al. (2011) Relation of addiction genes to hypothalamic gene changes subserving genesis and gratification of a classic instinct, sodium appetite. Proc Natl Acad Sci USA 108, 1250912514.
30. Aston-Jones, G, Smith, RJ, Sartor, GC et al. (2010) Lateral hypothalamic orexin/hypocretin neurons: a role in reward-seeking and addiction. Brain Res 1314, 7490.
31. Rolls, BJ, Rolls, ET, Rowe, EA et al. (1981) Sensory specific satiety in man. Physiol Behav 27, 137142.
32. Rolls, ET, Sienkiewicz, ZJ & Yaxley, S (1989) Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur J Neurosci 1, 5360.
33. Parra-Covarrubias, A, Rivera-Rodriguez, I & Almaraz-Ugalde, A (1971) Cephalic phase of insulin secretion in obese adolescents. Diabetes 20, 800802.
34. Powley, TL (1977) The ventromedial hypothalamic syndrome, satiety, and a cephalic phase hypothesis. Psychol Rev 84, 89126.
35. Dallman, MF, Pecoraro, N, Akana, SF et al. (2003) Chronic stress and obesity: a new view of ‘comfort food’. Proc Natl Acad Sci USA 100, 1169611701.
36. Berridge, KC, Ho, CY, Richard, JM et al. (2010) The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res 1350, 4364.
37. Berridge, KC (2007) The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology (Berl) 191, 391431.
38. Highfield, DA, Mead, AN, Grimm, JW et al. (2002) Reinstatement of cocaine seeking in 129X1/SvJ mice: effects of cocaine priming, cocaine cues and food deprivation. Psychopharmacology (Berl) 161, 417424.
39. Carr, KD (2007) Chronic food restriction: enhancing effects on drug reward and striatal cell signaling. Physiol Behav 91, 459472.
40. Berthoud, HR (2007) Interactions between the ‘cognitive’ and ‘metabolic’ brain in the control of food intake. Physiol Behav 91, 486498.
41. Rolls, BJ (2003) The supersizing of America: portion size and the obesity epidemic. Nutr Today 38, 4253.
42. Levitsky, DA & Youn, T (2004) The more food young adults are served, the more they overeat. J Nutr 134, 25462549.
43. Wansink, B & Kim, J (2005) Bad popcorn in big buckets: portion size can influence intake as much as taste. J Nutr Educ Behav 37, 242245.
44. Wansink, B, van Ittersum, K & Painter, JE (2006) Ice cream illusions bowls, spoons, and self-served portion sizes. Am J Prev Med 31, 240243.
45. Wansink, B & Payne, CR (2008) Eating behavior and obesity at Chinese buffets. Obesity (Silver Spring) 16, 19571960.
46. Rolls, BJ, Roe, LS & Meengs, JS (2006) Larger portion sizes lead to a sustained increase in energy intake over 2 days. J Am Diet Assoc 106, 543549.
47. Sclafani, A & Springer, D (1976) Dietary obesity in adult rats: similarities to hypothalamic and human obesity syndromes. Physiol Behav 17, 461471.
48. Tordoff, MG (2002) Obesity by choice: the powerful influence of nutrient availability on nutrient intake. Am J Physiol Regul Integr Comp Physiol 282, R1536R1539.
49. Petrovich, GD & Gallagher, M (2003) Amygdala subsystems and control of feeding behavior by learned cues. Ann N Y Acad Sci 985, 251262.
50. de Araujo, IE, Oliveira-Maia, AJ, Sotnikova, TD et al. (2008) Food reward in the absence of taste receptor signaling. Neuron 57, 930941.
51. Berthoud, HR, Lenard, NR & Shin, AC (2011) Food reward, hyperphagia, and obesity. Am J Physiol Regul Integr Comp Physiol 300, R1266R1277.
52. Grill, HJ & Norgren, R (1978) The taste reactivity test. I. Mimetic responses to gustatory stimuli in neurologically normal rats. Brain Res 143, 263279.
53. Steiner, JE (1973) The gustofacial response: observations on normal and anancephalic newborn infants. Bethesda, MD: U. S. Department of Health, Education, and Welfare.
54. Berridge, KC (2000) Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neurosci Biobehav Rev 24, 173198.
55. Berridge, KC & Kringelbach, ML (2008) Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology (Berl) 199, 457480.
56. Verhagen, JV (2006) The neurocognitive bases of human multimodal food perception: cconsciousness. Brain Res Brain Res Rev 53, 271286.
57. Rolls, ET, Verhagen, JV & Kadohisa, M (2003) Representations of the texture of food in the primate orbitofrontal cortex: neurons responding to viscosity, grittiness, and capsaicin. J Neurophysiol 90, 37113724.
58. Rolls, ET (2000) The orbitofrontal cortex and reward. Cereb Cortex 10, 284294.
59. Small, DM, Jones-Gotman, M, Zatorre, RJ et al. (1997) A role for the right anterior temporal lobe in taste quality recognition. J Neurosci 17, 51365142.
60. Small, DM, Zald, DH, Jones-Gotman, M et al. (1999) Human cortical gustatory areas: a review of functional neuroimaging data. Neuroreport. 10, 714.
61. de Araujo, IE, Kringelbach, ML, Rolls, ET et al. (2003) Representation of umami taste in the human brain. J Neurophysiol 90, 313319.
62. de Araujo, IE, Rolls, ET, Kringelbach, ML et al. (2003) Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur J Neurosci 18, 20592068.
63. Kringelbach, ML (2004) Food for thought: hedonic experience beyond homeostasis in the human brain. Neuroscience 126, 807819.
64. Berridge, KC, Robinson, TE & Aldridge, JW (2009) Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr Opin Pharmacol 9, 6573.
65. Schultz, W, Dayan, P & Montague, PR (1997) A neural substrate of prediction and reward. Science 275, 15931599.
66. Carelli, RM (2002) The nucleus accumbens and reward: neurophysiological investigations in behaving animals. Behav Cogn Neurosci Rev 1, 281296.
67. Hernandez, L & Hoebel, BG (1988) Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens. Physiol Behav 44, 599606.
68. Hajnal, A, Smith, GP & Norgren, R (2004) Oral sucrose stimulation increases accumbens dopamine in the rat. Am J Physiol Regul Integr Comp Physiol 286, R31R37.
69. Smith, GP (2004) Accumbens dopamine mediates the rewarding effect of orosensory stimulation by sucrose. Appetite 43, 11–3.
70. Stratford, TR & Kelley, AE (1999) Evidence of a functional relationship between the nucleus accumbens shell and lateral hypothalamus subserving the control of feeding behavior. J Neurosci 19, 1104011048.
71. Harris, GC, Wimmer, M & Aston-Jones, G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437, 556559.
72. Peyron, C, Tighe, DK, van den Pol, AN et al. (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18, 999610015.
73. Nakamura, T, Uramura, K, Nambu, T et al. (2000) Orexin-induced hyperlocomotion and stereotypy are mediated by the dopaminergic system. Brain Res 873, 181187.
74. Korotkova, TM, Sergeeva, OA, Eriksson, KS et al. (2003) Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J Neurosci 23, 711.
75. Hare, TA, O'Doherty, J, Camerer, CF et al. (2008) Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. J Neurosci 28, 56235630.
76. Soon, CS, Brass, M, Heinze, HJ et al. (2008) Unconscious determinants of free decisions in the human brain. Nat Neurosci 11, 543545.
77. Bechara, A, Damasio, H, Tranel, D et al. (1997) Deciding advantageously before knowing the advantageous strategy. Science 275, 12931295.
78. Hurley, KM, Herbert, H, Moga, MM et al. (1991) Efferent projections of the infralimbic cortex of the rat. J Comp Neurol 308, 249276.
79. Ghashghaei, HT & Barbas, H (2001) Neural interaction between the basal forebrain and functionally distinct prefrontal cortices in the rhesus monkey. Neuroscience 103, 593614.
80. Tettamanti, M, Rognoni, E, Cafiero, R et al. (2012) Distinct pathways of neural coupling for different basic emotions. Neuroimage 59, 18041817.
81. Westerhaus, MJ & Loewy, AD (2001) Central representation of the sympathetic nervous system in the cerebral cortex. Brain Res 903, 117127.
82. Volkow, ND & Wise, RA (2005) How can drug addiction help us understand obesity? Nat Neurosci 8, 555560.
83. Volkow, ND, Wang, GJ, Fowler, JS et al. (2008) Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci 363, 31913200.
84. Pelchat, ML (2002) Of human bondage: food craving, obsession, compulsion, and addiction. Physiol Behav 76, 347352.
85. Levine, AS, Kotz, CM & Gosnell, BA (2003) Sugars: hedonic aspects, neuroregulation, and energy balance. Am J Clin Nutr 78, 834S842S.
86. Kelley, AE & Berridge, KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22, 33063311.
87. Grigson, PS (2002) Like drugs for chocolate: separate rewards modulated by common mechanisms? Physiol Behav 76, 389395.
88. Del Parigi, A, Chen, K, Salbe, AD et al. (2003) Are we addicted to food? Obes Res 11, 493495.
89. Corwin, RL & Grigson, PS (2009) Symposium overview – Food addiction: fact or fiction? J Nutr 139, 617619.
90. Rogers, PJ & Smit, HJ (2000) Food craving and food ‘addiction’: a critical review of the evidence from a biopsychosocial perspective. Pharmacol Biochem Behav 66, 314.
91. Davis, C & Carter, JC (2009) Compulsive overeating as an addiction disorder. A review of theory and evidence. Appetite 53, 18.
92. Epstein, DH & Shaham, Y (2010) Cheesecake-eating rats and the question of food addiction. Nat Neurosci 13, 529531.
93. Ahmed, SH, Kenny, PJ, Koob, GF et al. (2002) Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nat Neurosci 5, 625626.
94. Markou, A & Koob, GF (1991) Postcocaine anhedonia. An animal model of cocaine withdrawal. Neuropsychopharmacology 4, 1726.
95. Russo, SJ, Dietz, DM, Dumitriu, D et al. (2010) The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci 33, 267276.
96. Hyman, SE, Malenka, RC & Nestler, EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29, 565598.
97. Koob, GF & Le Moal, M (2005) Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci 8, 14421444.
98. Koob, GF & Le Moal, M (2008) Addiction and the brain antireward system. Annu Rev Psychol 59, 2953.
99. Avena, NM, Rada, P & Hoebel, BG (2008) Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 32, 2039.
100. Bello, NT, Sweigart, KL, Lakoski, JM et al. (2003) Restricted feeding with scheduled sucrose access results in an upregulation of the rat dopamine transporter. Am J Physiol Regul Integr Comp Physiol 284, R1260R1268.
101. Bello, NT, Lucas, LR & Hajnal, A (2002) Repeated sucrose access influences dopamine D2 receptor density in the striatum. Neuroreport 13, 15751578.
102. Cottone, P, Sabino, V, Steardo, L et al. (2008) Intermittent access to preferred food reduces the reinforcing efficacy of chow in rats. Am J Physiol Regul Integr Comp Physiol 295, R1066R1076.
103. Johnson, PM & Kenny, PJ (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13, 635641.
104. Dalley, JW, Fryer, TD, Brichard, L et al. (2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315, 12671270.
105. Wang, GJ, Volkow, ND, Thanos, PK et al. (2004) Similarity between obesity and drug addiction as assessed by neurofunctional imaging: a concept review. J Addict Dis 23, 3953.
106. Boggiano, MM, Chandler, PC, Viana, JB et al. (2005) Combined dieting and stress evoke exaggerated responses to opioids in binge-eating rats. Behav Neurosci 119, 12071214.
107. Corwin, RL (2006) Bingeing rats: a model of intermittent excessive behavior? Appetite 46, 11–5.
108. Liang, NC, Hajnal, A & Norgren, R (2006) Sham feeding corn oil increases accumbens dopamine in the rat. Am J Physiol Regul Integr Comp Physiol 291: R1236R1239.
109. De Souza, CT, Araujo, EP, Bordin, S et al. (2005) Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146, 41924199.
110. Milanski, M, Degasperi, G, Coope, A et al. (2009) Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci 29, 359370.
111. Milanski, M, Arruda, AP, Coope, A et al. (2012) Inhibition of hypothalamic inflammation reverses diet-induced insulin resistance in the liver. Diabetes 61, 14551462.
112. Arruda, AP, Milanski, M, Coope, A et al. (2011) Low-grade hypothalamic inflammation leads to defective thermogenesis, insulin resistance, and impaired insulin secretion. Endocrinology 152, 13141326.
113. Calegari, VC, Torsoni, AS, Vanzela, EC et al. (2011) Inflammation of the hypothalamus leads to defective pancreatic islet function. J Biol Chem 286, 1287012880.
114. Clegg, DJ, Gotoh, K, Kemp, C et al. (2011) Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiol Behav 103, 1016.
115. Benoit, SC, Kemp, CJ, Elias, CF et al. (2009) Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest 119, 25772589.
116. Ryan, KK, Woods, SC & Seeley, RJ (2012) Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab 15, 137149.
117. Thaler, JP, Yi, CX, Schur, EA et al. (2012) Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 122, 153162.
118. Zhang, X, Zhang, G, Zhang, H et al. (2008) Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 135, 6173.
119. Posey, KA, Clegg, DJ, Printz, RL et al. (2009) Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab 296, E1003E1012.
120. Rother, E, Kuschewski, R, Alcazar, MA et al. (2012) Hypothalamic JNK1 and IKKbeta activation and impaired early postnatal glucose metabolism after maternal perinatal high-fat feeding. Endocrinology 153, 770781.
121. Cintra, DE, Ropelle, ER, Moraes, JC et al. . (2012) Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLoS ONE 7, e30571.
122. Gupta, S, Knight, AG, Keller, JN et al. (2012) Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J Neurochem 120, 1060–71.
123. de La Serre, CB, Ellis, CL, Lee, J et al. (2010) Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 299, G440G448.
124. Mohammed, N, Tang, L, Jahangiri, A et al. (2012) Elevated IgG levels against specific bacterial antigens in obese patients with diabetes and in mice with diet-induced obesity and glucose intolerance. Metabolism. Epublication ahead of print.
125. Lam, YY, Ha, CW, Campbell, CR et al. . (2012) Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS ONE 7, e34233.
126. Henao-Mejia, J, Elinav, E, Jin, C et al. (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179185.
127. Elinav, E, Strowig, T, Kau, AL et al. (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745757.
128. Harris, K, Kassis, A, Major, G et al. (2012) Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J Obes 2012, 879151.
129. Vijay-Kumar, M & Gewirtz, AT (2012) Is predisposition to NAFLD and obesity communicable? Cell Metab 15, 419420.
130. Paulino, G, Barbier de la, Serre C, Knotts, TA et al. (2009) Increased expression of receptors for orexigenic factors in nodose ganglion of diet-induced obese rats. Am J Physiol Endocrinol Metab 296, E898E903.
131. de Lartigue, G, Barbier de la, Serre C, Espero, E et al. (2011) Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons. Am J Physiol Endocrinol Metab 301, E187E195.
132. Donovan, MJ, Paulino, G & Raybould, HE (2009) Activation of hindbrain neurons in response to gastrointestinal lipid is attenuated by high fat, high energy diets in mice prone to diet-induced obesity. Brain Res 1248, 136140.
133. Nefti, W, Chaumontet, C, Fromentin, G et al. (2009) A high-fat diet attenuates the central response to within-meal satiation signals and modifies the receptor expression of vagal afferents in mice. Am J Physiol Regul Integr Comp Physiol 296, R1681R1686.
134. Kentish, S, Li, H, Philp, LK, O'Donnell, TA et al. (2012) Diet-induced adaptation of vagal afferent function. J Physiol 590, 209221.
135. Daly, DM, Park, SJ, Valinsky, WC et al. (2011) Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse. J Physiol 589, 28572870.
136. Garland, T Jr, Schutz, H, Chappell, MA et al. (2011) The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. J Exp Biol 214, 206229.
137. Bostrom, P, Wu, J, Jedrychowski, MP et al. (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463468.


The neurobiology of food intake in an obesogenic environment

  • Hans-Rudolf Berthoud (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed