Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-19T05:30:53.519Z Has data issue: false hasContentIssue false

Manipulation of the gut microflora: experimental approach in animals

Published online by Cambridge University Press:  28 February 2007

G. Fonty
Affiliation:
Laboratoire de Microbiologie, INRA-CR de Clermont-Ferrand-Theix, 63122– Saint-Genès-Champanelle, France Laboratoire de Biologie comparée des Protistes, CNRS-URA 0138, 63170 Aubiére, France
P. Raibaud
Affiliation:
LEPSD INRA, CR de Jouy-en-Josas, 78350 – Jouy-en-Josas, France
Ph. Gouet
Affiliation:
Laboratoire de Microbiologie, INRA-CR de Clermont-Ferrand-Theix, 63122– Saint-Genès-Champanelle, France
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘The digestive tract in nutritional adaptation’
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Allison, M. J., Bucklin, J. A. & Dougherty, R. W. (1964). Ruminal changes after overfeeding with wheat and the effect of intraruminal inoculation on adaption to a ration containing wheat. Journal of Animal Science 23, 11641171.CrossRefGoogle Scholar
Allison, M. J., Cook, H. M. & Jones, R. J. (1983). Detoxication of 3-hydroxy-4-(IH)-pyridone, the goitrogenic of mimosine, by rumen bacteria from Hawaiian goats. 17th Conference on Rumen Function, p. 21. Chicago, Ill.:ARS/USDA.Google Scholar
Andrieux, C., Gadelle, D., Leprince, C. & Sacquet, E. (1980). Effects of some poorly digestible carbohydrates on bile and bacterial transformation in the rat. British Journal of Nutrition 62, 103119.CrossRefGoogle Scholar
Barr, M. E. J., Mann, S. O., Richardson, A. J., Stewart, C. S. & Wallace, R. J. (1980). Establishment of ureolytic streptococci in the rumen of gnotobiotic lambs. Journal of Applied Bacteriology 49, 325330.CrossRefGoogle Scholar
Bauchop, T. & Mountfort, D. O. (1981). Cellulose fermentation by a rumen anaerobic fungus in both the absence and presence of rumen methanogens. Applied Environmental Microbiology 42, 11031110.CrossRefGoogle ScholarPubMed
Berchieri, A. Jr & Barrow, P. A. (1990). Further studies on the inhibition of colonization of the chicken alimentary tract with Salmonella typhimurium by pre-colonization with an avirulent mutant. Epidemiology Infections 104, 427441.CrossRefGoogle ScholarPubMed
Boulahrouf, A., Fonty, G. & Gouet, Ph. (1990). Establishment of cellulolytic bacteria in the digestive tract of conventionally-reared young mice: effect of the dietary cellulose content in the adult. FEMS Microbiology Letters 69, 8790.CrossRefGoogle Scholar
Boulahrouf, A., Fonty, G. & Gouet, Ph. (1991 a). Establishment, counts and identification of the fibrolytic microflora in the digestive tract of rabbit. Influence of feed cellulose content. Current Microbiology 22, 2125.CrossRefGoogle Scholar
Boulahrouf, A., Fonty, G. & Gouet, Ph. (1991 b). Establishment of Eubacterium cellulosolvens in the digestive tract of axenic and meroxenic mice: influence of feed cellulose content. FEMS Microbiology Letters 80, 2934.CrossRefGoogle Scholar
Bryant, M. P. & Small, N. (1960). Observations on the ruminal microorganisms of isolated and inoculated calves. Journal of Dairy Science 43, 654667.CrossRefGoogle Scholar
Chalupa, W. (1980). Chemical control of rumen microbial metabolism. In Digestive Physiology and Metabolism in Ruminants, pp. 325347 [Ruckebusch, Y. and Thivend, P., editors]. Lancaster: MTP Press Ltd.CrossRefGoogle Scholar
Chen, M. & Wolin, M. J. (1979). Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria. Applied and Environmental Microbiology 38, 7277.CrossRefGoogle ScholarPubMed
Cheng, K. J. & Costerton, J. W. (1986). Microbial adhesion and colonisation within the digestive tract. In Anaerobic Bacteria in Habitats Other than Man, pp. 239261 [Barnes, E. M. and Mead, G. C., editors]. Oxford: Blackwell Scientific Publications.Google Scholar
Cole, C. B., Fuller, R. & Carter, S. M. (1989). Effect of probiotic supplements of Lactobacillus acidophilus and Bifidobacterium adolescentis 2204 on β-glucosidase and β-glucuronidase activity in the lower gut of rats associated with a human faecal flora. Microbial Ecology in Health and Disease 2, 223225.CrossRefGoogle Scholar
Cook, A. R. (1976). Urease activity in the rumen of sheep and the isolation of ureolytic bacteria. Journal of General Microbiology 92, 3248.CrossRefGoogle ScholarPubMed
Corrier, D. E., Hargis, B., Hinton, A. Jr, Lindsey, D., Caldwell, D., Manning, J. & Deloach, J. (1991). Effects of anaerobic cecal microflora and dietary lactose on colonization resistance of layer chicks to invasive Salmonella enteritidis. Avian Disease 35, 337343.CrossRefGoogle ScholarPubMed
Cushnie, G. H., Richardson, A. J. & Sharman, G. A. M. (1979). Cerebrocortical necrosis in ruminants: Effects of thiaminase type 1-producing Clostridium sporogenes in lambs. Veterinary Records 105, 480482.CrossRefGoogle ScholarPubMed
Dehority, B. A. & Orpin, G. C. (1988). Development of, and natural fluctuations in, rumen microbial populations. In The Rumen Microbial Ecosystem, pp. 151183 [Hobson, P. N. editor]. London and New York: Elsevier Applied Science.Google Scholar
Dubos, F., Martinet, L., Dabard, J. & Ducluzeau, R. (1984). Immediate postnatal inoculation of a microbial barrier to prevent neonatal diarrhea induced by Clostridium difficile in young conventional and gnotobiotic hares. American Journal of Veterinary Research 45, 12421244.Google ScholarPubMed
Dubos-Ramaré, F. & Corthier, G. (1990). Influence of dietary proteins on production of Clostridium difficile toxins in gnotobiotic mice. Microbial Ecology in Health and Disease 3, 231234.CrossRefGoogle Scholar
Ducluzeau, R. (1988). Role of experimental microbial ecology in gastro enterology. In Microbial Ecology and Intestinal Infections, pp. 726 [Bergogne-Berezin, E. editor]. Paris: Springer-Verlag.Google Scholar
Ducluzeau, R., Bellier, M. & Raibaud, P. (1970). Transit digestif de divers inoculums bactériens introduits per os chez des souris axéniques et holoxéniques (conventionnelles): Effet antagoniste de la microflore du tractus gastro-intestinal. Zentralblatt für Bakteriologie, Parasitent unde Infectionsskrankheiten und Hygiene 213, 533548.Google Scholar
Ducluzeau, R., Dubos, F. & Raibaud, P. (1971). Effet antagoniste d'une souche de Lactobacillus sur une souche de Ristella sp dans le tube digestif de souris ‘gnotoxéniques’ absorbant du lactose. Annales de l'Institut Pasteur 21, 777794.Google Scholar
Ducluzeau, R. & Raibaud, P. (1979). Ecologie microbienne du tube digestif. Actualités Scientifiques de l'INRA. Paris: Masson.Google Scholar
Durand, M. (1982). Orientation du métabolisme du rumen au moyen des additifs. Annales de Zootechnie 31, 4776.CrossRefGoogle Scholar
Duval-Iflah, Y., Chappuis, J. P., Ducluzeau, R. & Raibaud, P. (1983). Intraspecific interactions between Escherichia coli strains in human newborns and in gnotobiotic mice and piglets. Progress in Food and Nutrition Science 7, 107116.Google ScholarPubMed
Duval-Iflah, Y., Raibaud, P. & Rousseau, M. (1981). Antagonisms among isogenic strains of Escherichia coli in the digestive tracts of gnotobiotic mice. Infection and Immunity 34, 957969.CrossRefGoogle ScholarPubMed
Duval-Iflah, Y., Raibaud, P., Tancrede, C. & Rousseau, M. (1980). R.plasmid transfer from Serratia liquefaciens to Escherichia coli in vitro and in vivo in the digestive tract of gnotobiotic mice associated with human fecal flora. Infection and Immunity 28, 981990.CrossRefGoogle ScholarPubMed
Fonty, G., Gouet, Ph. & Jouany, J. P. (1988 a). Establishment of Bacteroides succinogenes and measurement of the main digestive parameters in the rumen of gnotoxenic lambs. Canadian Journal of Microbiology 34, 3946.CrossRefGoogle ScholarPubMed
Fonty, G., Gouet, Ph., Jouany, J. P. & Senaud, J. (1983). Ecological factors determining the establishment of cellulolytic bacteria and protozoa in the rumen of meroxenic lambs. Journal of General Microbiology 129, 213223.Google ScholarPubMed
Fonty, G., Gouet, Ph., Jouany, J. P. & Senaud, J. (1987). Establishment of the microflora and anaerobic fungi in the rumen of lambs. Journal of General Microbiology 133, 18351843.Google Scholar
Fonty, G., Gouet, Ph. & Nebout, J. M. (1989). Development of the cellulolytic microflora in the rumen of lambs transferred into sterile isolators a few days after birth. Canadian Journal of Microbiology 35, 416422.CrossRefGoogle ScholarPubMed
Fonty, G. & Joblin, K. N. (1991). Rumen anaerobic fungi: their role and interactions with other rumen microorganisms in relation with fiber digestion. In Physiological aspects of digestion and metabolism in ruminants, pp. 655680 [Tsuda, T. Sasaki, Y. Kawashima, R., editors]. San Diego, Calif., Academic Press Inc.CrossRefGoogle Scholar
Fonty, G., Jouany, J. P., Chavarot, M., Bonnemoy, F. & Gouet, Ph. (1991). Development of the rumen digestive functions in lambs placed in a sterile isolator a few days before birth. Reproduction, Nutrition Development 31, 521528.CrossRefGoogle Scholar
Fonty, G., Roussel, O., Gouet, Ph. & Chavarot, M. (1988 b). Activité cellulolytique in vivo de Bacteroides succinogenes, Ruminococcus flavefaciens et Ruminococcus albus dans le rumen d'agneaux placés en isolateurs 24 heures après la naissance (Cellulolytic activity in vivo of Bacteroides succinogenes, Ruminococcus flavefaciens and Ruminococcus albus in the rumen of lambs placed in sterile isolators 24 hours after birth. Reproduction, Nutrition, Development 28, 135136.CrossRefGoogle Scholar
Goldin, B. R. & Gorbach, S. L. (1984). Effect of milk and lactobacillus feeding on human intestinal bacterial enzyme activity. American Journal of Clinical Nutrition 39, 756761.CrossRefGoogle ScholarPubMed
Gregg, K. & Sharpe, H. (1991). Enhancement of rumen microbial detoxification by gene transfer. In Physiological Aspects of Digestion and Metabolism in Ruminants, pp. 719735 [Tsuda, T. Sasaki, Y. and Kawashima, R., editors]. San Diego, Calif.: Academic Press Inc.CrossRefGoogle Scholar
Hazlewood, G. P. & Theather, R. M. (1988). The genetics of rumen bacteria. In The Rumen Microbial Ecosystem, pp. 323341 [Hobson, P. N. editor]. London and New York: Elsevier Applied Science.Google Scholar
Henderson, C., Stewart, C. S. & Hine, R. S. (1977). The effect of added tallow on the rumen digestion rate and microbial populations of sheep fed dried grass. Proceedings of the Nutrition Society 36, 148A.Google ScholarPubMed
Hobson, P. N., Mann, S. O. & Stewart, C. S. (1981). Growth and rumen function of gnotobiotic lambs fed on starch diets. Journal of General Microbiology 126, 219230.Google Scholar
Hobson, P. N. & Wallace, R. J. (1982). Microbial ecology and activities in the rumen. CRC Critical Review of Microbiology 9, 253320.CrossRefGoogle ScholarPubMed
Hudault, S., Bewa, H., Bridonneau, P. & Raibaud, P. (1985). Efficiency of various bacterial suspensions derived from cecal floras of conventional chickens in reducing the population level of Salmonella typhimurium in gnotobiotic mice and chickens intestines. Canadian Journal of Microbiology 31, 832838.CrossRefGoogle ScholarPubMed
Impey, C. S., Mead, G. C. & Georges, S. M. (1982). Competitive exclusion of Salmonella from the chick caecum using a defined mixture of bacterial isolates from the caecal microflora of an adult bird. Journal of Hygiene 89, 479490.CrossRefGoogle ScholarPubMed
Jouany, J. P., Demeyer, D. I. & Grain, J. (1988). Effect of defaunating the rumen. Animal Feed Science and Technology 21, 229256.CrossRefGoogle Scholar
Jouany, J. P., Fonty, G., Lassalas, B., Doré, J., Gouet, Ph. & Bertin, G. (1991). Effect of live yeast cultures on feed degradation in the rumen as assessed by in vitro measurements. 21st Biennial Conference on Rumen Function, p. 7, ChicagoILL: ARS/USDA.Google Scholar
Jouany, J. P. & Ushida, K. (1990). Protozoa and fibre digestion in the rumen. In The Rumen Ecosystem. The Microbial Ecosystem and its Regulation, pp. 139150 [Hoshimo, S., Onodera, R., Minato, H. and Itabashi, H., editors]. Tokyo: Japan Scientific Societies Press and Springer-Verlag.Google Scholar
Lysons, R. J., Alexander, T. J. L. & Wellstead, P. D. (1977). Nutrition and growth of gnotobiotic lambs. Journal of Agricultural Science 88, 597604.CrossRefGoogle Scholar
Lysons, R. J., Alexander, T. J. L., Wellstead, P. D., Hobson, P. N., Mann, S. O. & Stewart, C. S. (1976). Defined bacterial populations in the rumen of gnotobiotic lambs. Journal of General Microbiology 94, 257269.CrossRefGoogle ScholarPubMed
Maczulak, A. E., Dehority, B. A. & Palmquist, D. L. (1981). Effects of long-chain fatty acids on growth of rumen bacteria. Applied and Environmental Microbiology 42, 856862.CrossRefGoogle ScholarPubMed
Mahé, S., Corthier, G. & Dubos, F. (1987). Effect of various diets on toxin production by two strains of Clostridium difficile in gnotobiotic mice. Infection and Immunity 55, 18011805.CrossRefGoogle ScholarPubMed
Mallett, A. K., Bearne, C. A., Rowland, I. R., Farthing, M. J. G., Cole, C. B. & Fuller, R. (1987). The use of rats associated with a human faecal flora as a model for studying the effects of diet on the human gut microflora. Journal of Applied Bacteriology 63, 3945.CrossRefGoogle Scholar
Mann, S. O., Grant, C. & Hobson, P. N. (1980). Interactions of E. coli and lactobacilli in gnotobiotic lambs. Microbiology Letters 15, 141144.Google Scholar
Mann, S. O. & Stewart, C. S. (1974). Establishment of a limited rumen flora in gnotobiotic lambs fed on a roughage diet. Journal of General Microbiology 84, 379382.CrossRefGoogle ScholarPubMed
Nisbet, D. S. & Martin, S. A. (1991). Effect of a Saccharomyces cerevisiae culture on lactate utilization by the ruminal bacterium Selenomonas ruminantium. Journal of Animal Science 69, 46284633.CrossRefGoogle ScholarPubMed
Perdignon, G. & Alvarez, S. (1992). Probiotics and the immune state. In Probiotics. The Scientific Basis, pp. 145150 [Fuller, R., editor]. London: Chapman and Hall.CrossRefGoogle Scholar
Prins, R. A. (1991). The rumen ciliate and their functions. In Rumen Microbial Metabolism and Ruminant Digestion, pp. 3952 [Jouany, J. P., editor]. Paris: INRA editions.Google Scholar
Prins, R. A., Van Nevel, C. S. & Demeyer, D. I. (1972). Pure culture studies of inhibitors for methanogenic bacteria. Antonie Van Leeuwenhoek Journal of Microbiology and Serology 38, 281287.CrossRefGoogle ScholarPubMed
Raibaud, P., Ducluzeau, R., Muller, M. C. & Abrams, G. D. (1972). Diet and the equilibrium between bacteria and yeast implanted in gnotobiotic rats. American Journal of Clinical Nutrition 25, 14671474.CrossRefGoogle ScholarPubMed
Sacquet, E., Leprince, C., Riottot, M. & Raibaud, P. (1985). Dietary fiber and cholesterol and bile acid metabolism in axenic (germfree) and holoxenic (conventional) rats. III. Effect of non-sterilized pectin. Reproduction, Nutrition, Development 25, 93100.CrossRefGoogle ScholarPubMed
Savaiano, D. A., Abouelanouar, A., Smith, D. E. & Levitt, M. O. (1984). Lactose malabsorption from yogurt, pasteurized yogurt, sweet acidophilus milk and cultured milk in lactose deficient individuals. American Journal of Clinical Nutrition 40, 12191223.CrossRefGoogle ScholarPubMed
Stewart, C. S., Fonty, G. & Gouet, Ph. (1988). Establishment of rumen microbial communities. Animal Feed Science and Technology 21, 6997.CrossRefGoogle Scholar
Teather, R. M. & Ohmiya, K. (1991). Molecular genetics of rumen cellulase systems. In Physiological Aspects of Digestion and Metabolism in Ruminants, pp. 701717 [Tsuda, T. Sasaki, Y. and Kawashima, R., editors]. San Diego, Calif.: Academic Press Inc.CrossRefGoogle Scholar
Ushida, K., Jouany, J. P. & Demeyer, D. I. (1991). Effects of presence or absence of rumen protozoa on the efficiency of utilization of concentrate and fibrous feeds. In Physiological Aspects of Digestion and Metabolism in Ruminants, pp. 625654 [Tsuda, T. Sasaki, Y. and Kawashima, R., editors]. San Diego, Calif.: Academic Press Inc.CrossRefGoogle Scholar
Van Nevel, C. S. & Demeyer, D. I. (1977). Effect of monensin on rumen metabolism in vitro. Applied and Environmental Microbiology 34, 251257.CrossRefGoogle ScholarPubMed
Van Nevel, C. S. & Demeyer, D. I. (1988). Manipulation of rumen fermentation. In The Rumen Microbial Ecosystem, pp. 387443 [Hobson, P. N., editor]. London and New York: Elsevier Applied Science.Google Scholar
Wallace, R. J. & Newbold, C. J. (1992). Probiotics for ruminants. In Probiotics. The Scientific Basis, pp. 317353 [Fuller, R., editor]. London: Chapman and Hall.CrossRefGoogle Scholar
Williams, A. G. & Coleman, G. S. (editors) (1992). Metabolism of entodiniomorphid protozoa. In The Rumen Protozoa, pp. 173235. London: Springer-Verlag.CrossRefGoogle Scholar
Williams, P. E. V. (1989). The mode of action of yeast culture in ruminant diets: a review of the effect on rumen fermentation patterns. In Biotechnology in the Feed Industry, pp. 6584 [Lyons, T. P., editor]. Nicholasville: Alltech Technical Publications.Google Scholar
Yurdusev, N., Nicolas, J. L., Ladiré, R. D., Ducluzeau, R. & Raibaud, P. (1987). Antagonistic effect exerted by three strictly anaerobic strains against various strains of Clostridium perfringens in gnotobiotic rodent intestines. Canadian Journal of Microbiology 33, 226231.CrossRefGoogle ScholarPubMed