Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T06:42:48.669Z Has data issue: false hasContentIssue false

Intestinal sodium-dependent D-glucose co-transporter: Dietary regulation

Published online by Cambridge University Press:  11 October 2007

Soraya P. Shirazi-Beechey
Affiliation:
Epithelial Function and Development Group, Institute of Biological Sciences, University of Wales, Aberystwyth, Dyfed, SY23 3DD
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Glucose transporters in the control of metabolism’
Copyright
Copyright © The Nutrition Society 1996

References

Attaix, D., Meslin, J.-C. (1991). Changes in small intestinal mucosal morphology and cell renewal in suckling, prolonged-suckling, and weaned lambs. American Journal of Physiology 261, R811R818.Google ScholarPubMed
Bassett, J. M. (1975). Dietary and gastro-intestinal control of hormones regulating carbohydrate metabolism in ruminants. In Digestion amd Metabolism in Ruminants 383398 McDonald, I. W. & Warner, A. C. I. Armidale, NSW: University of New England Publishing Unit.Google Scholar
Buchmiller, T. I., Fonkalsrud, E. W., Kim, C. S., Chopourian, H. L., Shaw, K. S., Lam, M. M. & Diamond, J. M. (1992). Upregulation of nutrient transport in foetal rabbit intestine by transamniotic substrate administration. Journal of Surgical Research 52, 443447.CrossRefGoogle ScholarPubMed
Coady, M. J., Pajor, A. M. & Wright, E. M. (1990). Sequence homologies among intestinal and renal Na+/glucose cotransporters. American Journal of Physiology 259, C605C610.Google Scholar
Cohen, I. T. & Greecher, C. P. (1979). Nutritional status following surgical correction of gastrointestinal anomalies. Journal of Paediatric Surgery 14, 386389.Google Scholar
Crane, R. K., Miller, D. & Bihler, I. (1961). The restrictions on possible mechanisms of intestinal active transport of sugars. In Membrane Transport and Mechanism 439449 Kleinzeller, A. & Kotyk, A. Prague: Czechoslovakian Academy of Sciences.Google Scholar
Davidson, N. O., Hausman, A. M. L., Ifkovits, C. A., Buse, J. B., Gould, G. W., Burant, C. F. & Bell, G. I. (1992). Human intestinal glucose transporter expression and localization of GLUT5. American Journal of Physiology 262, C795C800.CrossRefGoogle ScholarPubMed
Dyer, J., Scott, D., Beechey, R. B., Care, A. D., Abbas, K. S., Shirazi-Beechey, S. P. (1994). Dietary regulation of intestinal glucose transport. In Mammalian Brush-border Membrane Proteins part 2, 6572 Lentze, M. J., Grand, R. J. & Naim, H. Y. Stuttgart and New York: Thieme Verlag.Google Scholar
Ferraris, R. P. & Diamond, J. (1989). Specific regulation of intestinal nutrient transporters by their dietary substrates. Annual Review of Physiology 51, 125141.Google Scholar
Freeman, T. C., Wood, I. S., Sirinathsinghji, D. J. S., Beechey, R. B., Dyer, J., Shirazi-Beechey, S. P. (1993). The expression of Na+-glucose cotransporter (SGLT1) gene in lamb small intestine during postnatal development. Biochimica et Biophysica Acta 1146, 203212.Google Scholar
Geigy Scientific Tables 1981 Units of Measurement, Body Fluids, Composition of the Body, Nutrition vol. 1 Lentner, C. Basle: Ciba-Geigy Ltd..Google Scholar
Grand, R. J., Sutphen, J. L. & Montgomery, R. K. (1979). The immature intestine: implications for nutrition of the neonate. In Development of Mammalian Absorptive Processes 293311 Elliot, K. & Whelan, J. Amsterdam: Excerpta Medica.Google Scholar
Harding, R., Bocking, A. D., Sigger, J. N. & Wickham, P. J. D. (1984). Composition and volume of fluid swallowed by foetal sheep. Quarterly Journal of Experimental Physiology 69, 487495.Google Scholar
Hediger, M. A., Coady, M. J., Ikeda, T. S. & Wright, E. M. (1987). Expression Cloning and cDNA sequencing of the Na+-glucose co-transporter. Nature 330, 379381.CrossRefGoogle ScholarPubMed
Hediger, M. A., Turk, E. & Wright, E. M. (1989). Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporter. Proceedings of the National Academy of Sciences. USA 86, 47484752.Google Scholar
Hirayama, B. A., Wong, H. C., Smith, C. D., Hagenbuch, B. A., Hediger, M. A. & Wright, E. M. (1991). Intestinal and renal Na+-glucose cotransporters share common structure. American Journal of Physiology 261, C296C304.Google Scholar
Hopfer, U. (1987). Membrane transport mechanisms for hexose and amino acids in the small intestine. In Physiology of the Gastrointestinal Tract 2nd ed. 14991526 Johnson, L. R. New York: Raven Press.Google Scholar
Koldovsky, O. A., Heringova, A., Jirsova, V., Jirasek, J. E. & Uher, J. (1965). Transport of glucose against a concentration gradient in everted sacs of jejunum and ileum of human fetuses. Gastroenterology 48, 185187.CrossRefGoogle ScholarPubMed
Leat, W. F. M. (1970). Carbohydrate and lipid metabolism in the ruminant during postnatal development. In Physiology of Digestion and Metabolism in the Ruminant 211222 Philipson, A. T. Newcastle upon Tyne: Oriel Press.Google Scholar
Lee, W.-S., Kanai, Y., Wells, R. G. & Hediger, M. A. (1994). The high affinity Na+/glucose cotransporter. Journal of Biological Chemistry 268, 1203212039.CrossRefGoogle Scholar
Lescale-Matys, L., Dyer, J., Scott, D., Freeman, T. C., Wright, E. M., Shirazi-Beechey, S. P. (1993). Regulation of the ovine intestinal Na+-glucose co-transporter (SGLT1) is dissociated from mRNA abundance. Biochemical Journal 291, 435440.CrossRefGoogle ScholarPubMed
Mellor, D. J. & Slater, J. S. (1974). Some aspects of the physiology of sheep foetal fluids. British Veterinary Journal 130, 238247.Google Scholar
Morrison, A. L., Panayotova-Heierman, M., Feigl, G., Scholermann, B. & Kinne, R. K. H. (1991). Sequence comparison of the sodium-D-glucose cotransport systems in rabbit renal and intestinal epithelia. Biochimica et Biophysica Acta 1089, 121123.CrossRefGoogle ScholarPubMed
Ohta, T., Isselbacher, K. J. & Rhoads, D. B. (1990). Regulation of glucose transporters in LLC-PK1 cells: effects of D-glucose and monosaccharides. Molecular Cell Biology 10, 64916499.Google ScholarPubMed
Pajor, A. M., Hirayama, B. A. & Wright, E. M. (1992). Molecular biology approaches to comparative study of Na+-glucose cotransporter. American Journal of Physiology 263, R489R495.Google Scholar
Phillips, J. D., Fonkalsrud, E. W., Mirzayan, A., Kim, C. S., Kieu, A., Zeng, H. & Diamond, J. M. (1991). Uptake and distribution of continuously infused intraamniotic nutrients in foetal rabbits. Journal of Paediatric Surgery 26, 374380.CrossRefGoogle Scholar
Pitkin, R. M. & Reynolds, W. A. (1975). Foetal ingestion and metabolism of amniotic fluid protein. American Journal of Obstetrics and Gynaecology 123, 356363.Google Scholar
Pritchard, J. A. (1966). Foetal swallowing and amniotic fluid volume. Obstetrics and Gynaecology 28, 606.Google ScholarPubMed
Scharrer, E. (1975). Developmental changes of sugar and amino acid transport in different tissues of ruminants. In Digestion and Metabolism in the Ruminant 4959 McDonald, I. W. & Warner, A. C. I. Armidale, NSW: University of New England Publishing Unit.Google Scholar
Scharrer, E., Liebich, H.-G., Raab, W. & Promberger, N. (1979). Influence of age and rumen development on intestinal absorption of galactose and glucose in lambs. Zentralblatt für Veterinarmedizin Reihe A 26, 95105.CrossRefGoogle ScholarPubMed
Semenza, G., Kessler, M., Hosang, M. & Schmidt, U. (1984). Biochemistry of the Na+-D-glucose cotransporter of the intestinal brush border membrane. Biochimica et Biophysica Acta 779, 343370.CrossRefGoogle ScholarPubMed
Shirazi-Beechey, S. P. (1995). The molecular biology of glucose transport. Nutrition Research Reviews 8, 2741.CrossRefGoogle ScholarPubMed
Shirazi-Beechey, S. P., Davies, A. G., Tebbutt, K., Dyer, J., Ellis, A., Taylor, C. J., Fairclough, P. & Beechey, R. B. (1990). Preparation and properties of brush-border membrane vesicles from human small intestine. Gastroenterology 98, 676685.CrossRefGoogle ScholarPubMed
Shirazi-Beechey, S. P., Gribble, S. M., Wood, I. S., Tarpey, P. S., Beechey, R. B., Dyer, J., Scott, D. & Barker, P. J. (1994). Dietary regulation of intestinal sodium-dependent glucose cotransporter (SGLT1). Biochemical Society Transactions 22, 655658.Google Scholar
Shirazi-Beechey, S. P., Hirayama, B. A., Wang, Y., Scott, D., Smith, M. W. & Wright, E. M. (1991 a). Ontogenic development of lamb intestinal sodium-glucose cotransporter is regulated by diet. Journal of Physiology 437, 699708.Google Scholar
Shirazi-Beechey, S. P., Kemp, R. B., Dyer, J. & Beechey, R. B. (1989). Changes in the functions of the intestinal brush border membrane during the development of ruminant habit in lambs. Comparative Biochemistry and Physiology 94B, 801806.Google Scholar
Shirazi-Beechey, S. P., Smith, M. W., Wang, Y. & James, P. S. (1991 b). Postnatal development of lamb intestinal digestive enzymes is not regulated by diet. Journal of Physiology 437, 691698.CrossRefGoogle Scholar
Shirazi-Beechey, S. P., Wood, I. S., Dyer, J., Scott, D. & King, T. P. (1995). Intestinal sugar transport in ruminants. In Ruminant Physiology: Digestion, Metabolism, Growth and Production 115132 von Engelhardt, W. Stuttgart: Enke-Verlag.Google Scholar
Tarpey, P. S., Shirazi-Beechey, S. P. & Beechey, R. B. (1994). Molecular characterisation of the Na+/glucose co-transporter from the sheep parotid-gland acinar cell. Biochemical Society Transactions 22, S264.CrossRefGoogle ScholarPubMed
Tarpey, P. S., Wood, I. S., Shirazi-Beechey, S. P. & Beechey, R. B. (1995). Amino acid sequence and the cellular location of the Na+-dependent D-glucose symporters (SGLT1) in the ovine enterocyte and the parotid acinar cell. Biochemical Journal 312, 293300.CrossRefGoogle ScholarPubMed
Thorens, B. (1993). Facilitated glucose transporters in epithelial cells. Annual Review of Physiology 55, 591608.CrossRefGoogle ScholarPubMed
Vazquez, C. M., Wood, I. S., Dyer, J., Planas, J. M., Ilundain, A., Shirazi-Beechey, S. P. (1993). Regulation of sugar transport in chicken enterocytes. Biochemical Society Transactions 21, 4798.CrossRefGoogle ScholarPubMed
Wood, I. S., Scott, D., Beechey, R. B., Shirazi-Beechey, S. P. (1994). Cloning and sequencing of the ovine intestinal Na+-glucose cotransporter (SGLT1). Biochemical Society Transactions 22, 266S.Google Scholar
Wright, E. M., Hirayama, B. A., Loo, D. D. F., Turk, E. & Hager, K. (1994). Intestinal sugar transport. In Physiology of the Gastrointestinal Tract 3rd ed. 17511772 Johnson, L. R. New York: Raven Press.Google Scholar