Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-19T05:37:30.702Z Has data issue: false hasContentIssue false

Interactions between nutrition and the intestinal microflora

Published online by Cambridge University Press:  28 February 2007

Christine Edwards
Affiliation:
Department of Human Nutrition, Glasgow University, Yorkhill Hospitals, Glasgow G3 8SJ
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘The digestive tract in nutritional adaptation’
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Adiotomre, J., Eastwood, M. A., Edwards, C. A. & Brydon, W. G. (1990). Dietary fibre; in vitro methods that anticipate nutrition and metabolic activity in humans. American Journal of Clinical Nutrition 52, 128134.CrossRefGoogle ScholarPubMed
Anderson, J. W. & Bridges, S. R. (1984). Short chain fatty acid fermentation products of plant fibre affect glucose metabolism of isolated rat hepatocytes. Proceedings of the Society of Experimental Biology and Medicine 177, 372376.CrossRefGoogle ScholarPubMed
Archibald, F. S. (1983). Lactobacillus plantarum an organism not requiring iron. FEMS Microbiology Letters 19, 2932.CrossRefGoogle Scholar
Armstrong, L. F., Eastwood, M. A., Edwards, C. A., Brydon, W. G. & Macintyre, C. C. A. (1992). The effect of weaning diet on the subsequent colonic metabolism of dietary fibre in the adult rat. British Journal of Nutrition 68, 741751.CrossRefGoogle ScholarPubMed
Augeron, C. & Laboisse, C. L. (1984). Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate. Cancer Research 44, 39613969.Google Scholar
Balmer, S. E., Scott, P. H. & Wharton, B. A. (1989). Diet and faecal flora in the newborn: casein and whey proteins. Archives of Disease in Childhood 64, 16781684.CrossRefGoogle ScholarPubMed
Balmer, S. E. & Wharton, B. A. (1989 a). Diet and faecal flora in the newborn: breast milk and infant formula. Archives of Disease in Childhood 64, 16721677.CrossRefGoogle ScholarPubMed
Balmer, S. E. & Wharton, B. A. (1989 b). Diet and faecal flora in the newborn: lactoferrin. Archives of Disease in Childhood 64, 16851690.CrossRefGoogle ScholarPubMed
Balmer, S. E. & Wharton, B. A. (1991). Diet and faecal flora in the newborn: iron. Archives of Disease in Childhood 66, 13901394.CrossRefGoogle ScholarPubMed
Bhatia, J., Prihoda, A. R. & Richardson, C. J. (1986). Parenteral antibiotics and carbohydrate intolerance in term neonates. American Journal of Disease in Childhood 140, 111113.Google ScholarPubMed
Bornside, G. H. (1978). Stability of human fecal flora. American Journal of Clinical Nutrition 31, S141S144.CrossRefGoogle ScholarPubMed
Breuer, R. I., Butro, S. K., Christ, M. L., Bean, J., Vernia, P., Paoluzi, P., Di Paolo, M. C. & Caprilli, R. (1991). Rectal irrigation with short chain fatty acids for distal ulcerative colitis. Digestive Diseases and Sciences 36, 185187.CrossRefGoogle ScholarPubMed
Bullen, C. L., Tearle, P. V. & Stewart, M. G. (1977). The effect of ‘humanised’ milks and supplemented breast feeding on the faecal flora of infants. Journal of Medical Microbiology 10, 403413.CrossRefGoogle ScholarPubMed
Bullen, C. L., Tearle, P. V. & Willis, A. T. (1976). Bifidobacteria in the intestine of infants: an in vivo study. Journal of Medical Microbiology 9, 325333.CrossRefGoogle ScholarPubMed
Chen, W.-J., Anderson, J. W. & Jennings, D. (1984). Propionate may mediate the hypocholesterolaemic effects of certain soluble plant fibres in cholesterol fed rats. Proceedings of the Society of Experimental Medicine 175, 215218.CrossRefGoogle Scholar
Cummings, J. H. (1981). Short chain fatty acids in the human colon. Gut 22, 763779.CrossRefGoogle ScholarPubMed
Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. E. & Macfarlane, G. T. (1987). Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 12211227.CrossRefGoogle ScholarPubMed
Drasar, B. S. & Hill, M. J. (1974). Human Intestinal Flora. New York: Academic Press.Google Scholar
Edwards, C. A., Bowen, J. & Eastwood, M. A. (1990). The effect of isolated complex carbohydrates on caecal and faecal short chain fatty acids and stool output in the rat. In Dietary Fibre: Chemical and Biological Aspects, pp. 273276 [Southgate, D. A. T., Waldron, K., Johnson, I. T. and Fenwick, G. R., editors]. Cambridge: Royal Society of Chemistry.Google Scholar
Edwards, C. A. & Bruce, M. & Ferguson, A. (1992 a). The effect of supplementing elemental diet with Dextran on colonic short chain fatty acids and cellular proliferation in the rat. Proceedings of the Nutrition Society 51, 5A.Google Scholar
Edwards, C. A. & Eastwood, M. A. (1992). Comparison of the effects of ispaghula and wheat bran on rat caecal and colonic fermentation. Gut 33, 12291233.CrossRefGoogle ScholarPubMed
Edwards, C. A., Wilson, R. G., Hanlon, L. & Eastwood, M. A. (1992 b). Effect of the dietary fibre content of lifelong diet on colonic cellular proliferation in the rat. Gut 33, 10761079.CrossRefGoogle ScholarPubMed
Englyst, H. N., Ay, S. & MacFarlane, G. T. (1987). Polysaccharide breakdown by mixed populations of human faecal bacteria. Microbiology Ecology 95, 163171.Google Scholar
Faelli, A. & Esposito, G. (1970). Effect of inosine and its metabolites on intestinal iron absorption in the rat. Biochemical Pharmacology 19, 25512554.CrossRefGoogle ScholarPubMed
Fay, J. P. & Faries, R. N. (1975). The inhibitory action of fatty acids on the growth of Escherichia coli. Journal of General Microbiology 91, 223240.CrossRefGoogle ScholarPubMed
Floch, M. H., Binder, H. J., Filburn, B. & Gershengoren, W. (1972). The effect of bile acids on intestinal microflora. American Journal of Clinical Nutrition 25, 14181426.CrossRefGoogle ScholarPubMed
Florent, C., Flourie, B., Leblond, A., Raurureau, M., Bernier, J. J. & Rambaud, J. L. (1985). Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (in vivo study). Journal of Clinical Investigation 75, 608613.CrossRefGoogle ScholarPubMed
Gil, A., Corral, E., Martinez, A. & Molina, J. A. (1986). Effects of the addition of nucleotides to an adapted milk formula on the microbial pattern of faeces in at-term newborn infants. Journal of Clinical Nutrition and Gastroenterology 1, 127132.Google Scholar
Goodlad, J. S. & Mathers, J. C. (1990). Large bowel fermentation in rats given diets containing raw peas (Pisum sativum). British Journal of Nutrition 64, 569578.CrossRefGoogle ScholarPubMed
Gorbach, S. L., Banwell, J. G., Jacobs, B., Chatterjee, B. D., Mitra, R., Sen, N. I. N. & Guha Mazumder, D. N. (1970). Tropical sprue and malnutrition in west Bengal. I. Intestinal microflora and absorption. American Journal of Clinical Nutrition 23, 15451558.CrossRefGoogle Scholar
Gracey, M. (1979). The contaminated small bowel syndrome: pathogenesis, diagnosis and treatment. American Journal of Clinical Nutrition 32, 234243.CrossRefGoogle ScholarPubMed
Heine, W., Wutzke, K. D., Richter, I., Walther, F. & Plath, C. (1987). Evidence for colonic absorption of protein nitrogen in infants. Acta Paediatrica Scandinavia 76, 741744.CrossRefGoogle ScholarPubMed
Hill, M. J. (1981). Diet and the human intestinal bacterial flora. Cancer Research 41, 37783780.Google ScholarPubMed
Howie, P. W., Forsyth, J. S., Ogston, S. A., Clark, A. & Florey, C. V. (1990). Protective effect of breast feeding against infection. British Medical Journal 300, 1116.CrossRefGoogle ScholarPubMed
Illman, R. J., Topping, D. L., McIntosh, G. H., Trimble, R. P., Storer, G. B., Taylor, M. N. & Cheng, B.-Q. (1988). Hypocholesterolaemic effects of dietary propionate: Studies in whole animals and perfused rat liver. Annals of Nutrition and Metabolism 32, 97107.CrossRefGoogle ScholarPubMed
Jacobs, L. R. (1990). Experimental colon carcinogenesis. In Dietary Fibre Chemistry, Physiology and Health Effects, pp. 389401 [Kritchevsky, D., Bonfield, C. and Anderson, J. W., editors]. New York: Plenum Press.CrossRefGoogle Scholar
Kien, C. L., Lietchy, E. A., Myerberg, D. Z. & Mullet, M. D. (1987). Dietary carbohydrate assimilation in the premature infant: evidence for a nutritionally significant bacterial ecosystem in the colon. American Journal of Clinical Nutrition 46, 456460.CrossRefGoogle ScholarPubMed
Kirwan, W. O., Smith, A. N., Mitchell, W. D., Falconer, J. D. & Eastwood, M. A. (1975). Bile acids and colonic motility in the rabbit and human. Gut 16, 894902.CrossRefGoogle Scholar
Kurpad, A. V. & Shetty, P. S. (1986). Effects of antimicrobial therapy on faecal bulking. Gut 27, 5558.CrossRefGoogle Scholar
Lupton, J. R., Coder, D. M. & Jacobs, L. R. (1988). Long term effects of fermentable fibres on rat colonic pH and epithelial cell cycle. Journal of Nutrition 118, 840845.CrossRefGoogle ScholarPubMed
McBurney, M. I., Horvath, P. J., Jeraci, J. L. & Van Soest, P. J. (1985). Effect of in vitro fermentation using faecal inoculum on the water holding capacity of dietary fibre. British Journal of Nutrition 53, 1724.CrossRefGoogle ScholarPubMed
McBurney, M. I. & Thompson, L. U. (1987). Effect of human faecal inoculum on in vitro fermentation variables. British Journal of Nutrition 58, 233243.CrossRefGoogle ScholarPubMed
MacLean, W. C. & Fink, B. B. (1980). Lactose malabsorption by premature infants: magnitude and clinical significance. Journal of Pediatrics 97, 383388.CrossRefGoogle ScholarPubMed
McMillan, J. A., Oski, F. A., Lourie, G., Tomarelli, R. M. & Landau, S. A. (1977). Iron absorption from milk, simulated mother's milk and proprietary formulas. Pediatrics 60, 896900.CrossRefGoogle ScholarPubMed
Mallett, A. K., Bearne, C. A., Young, P. J. & Rowland, I. R. (1988). Influence of starches of low digestibility on the rat caecal microflora. British Journal of Nutrition 60, 597604.CrossRefGoogle ScholarPubMed
Mallett, A. K. & Rowland, I. R. (1990). Bacterial enzymes and their role in the formation of mutagens and carcinogens in the intestine. Digestive Diseases and Sciences 8, 7179.CrossRefGoogle ScholarPubMed
Mekhjian, H. S., Phillips, S. F. & Hoffman, A. F. (1971). Colonic secretion of water and electrolytes induced by bile acids: perfusion studies in man. Gastroenterology 59, 120129.CrossRefGoogle Scholar
Mevissen-Verhage, E. A. E., Marcelis, J. H., Amerongen, Harmsen-van W. C. M., de Vos, N. M. & Verhoef, J. (1985). Effect of iron on neonatal gut flora during the first three months of Life. European Journal of Clinical Microbiology 4, 273278.CrossRefGoogle ScholarPubMed
Mobassaleh, M., Montgomery, R. K., Biller, J. A. & Grand, R. J. (1985). Development of carbohydrate absorption in the fetus and neonate. Pediatrics 75, Suppl., 160166.CrossRefGoogle ScholarPubMed
Mortensen, F. V., Nielsen, H., Mulvaney, M. J. & Hessov, I. (1990). Short chain fatty acids dilate isolated human colonic resistance arteries. Gut 31, 13911394.CrossRefGoogle ScholarPubMed
Owen, R., Thompsen, M., Hill, M. J., Wilpart, M., Mangurt, P. & Roberfroid, M. (1987). The importance of the ratio of lithocholic to deoxycholic acid in large bowel carcinogenesis. Nutrition and Cancer 9, 6771.CrossRefGoogle ScholarPubMed
Rao, S. S. C., Edwards, C. A., Austin, C., Read, N. W. & Holdsworth, C. D. (1988). Impaired colonic fermentation of carbohydrate after ampicillin. Garstroenterology 94, 928932.CrossRefGoogle ScholarPubMed
Read, N. W. & Eastwood, M. A. (1992). Gastrointestinal physiology and function. In Dietary Fibre: a Component of Food, pp. 103118 [Schweizer, T. F. and Edwards, C. A., editors]. London: Springer Verlag.CrossRefGoogle Scholar
Roediger, W. E. (1982). Utilization of nutrients by isolated epithelial cells of rat colon. Gastroenterology 83, 424429.CrossRefGoogle ScholarPubMed
Rowland, I. R. & Mallett, A. K. (1990). The influence of dietary fibre on microbial enzyme activity in the gut. In Dietary Fibre Chemistry, Physiology and Health Benefits, pp. 195206 [Kritchevsky, D. Bonfield, C. and Anderson, J. W., editors]. New York: Plenum Press.Google Scholar
Ruppin, H., Bar-meir, S., Soergel, K. H., Wood, C. M. & Schmitt, M. G. (1980). Absorption of short chain fatty acids by the colon. Gastroenterology 78, 15001507.CrossRefGoogle ScholarPubMed
Sakata, T. (1987). Stimulatory effect of short chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for the trophic effects of fermentable fibre, gut microbes and luminal trophic factors. British Journal of Nutrition 58, 95103.CrossRefGoogle ScholarPubMed
Sakata, T. (1989). Stimulatory effect of short chain fatty acids on epithelial cell proliferation of isolated and denervated jejunal segment of the rat. Scandinavian Journal of Gastroenterology 24, 886890.CrossRefGoogle ScholarPubMed
Salyers, A. A. & Leedle, J. A. Z. (1983). Carbohydrate metabolism in the human colon. In Microflora in Health and Disease, pp. 129146 [Hentges, D., editor]. New York: Academic Press.CrossRefGoogle Scholar
Simhon, A., Douglas, J. R., Drasar, B. S. & Soothill, J. F. (1982). Effect of feeding on infants faecal flora. Archives of Disease in Childhood 57, 5458.Google ScholarPubMed
Spiller, R. C., Brown, M. L. & Phillips, S. F. (1986). Decreased fluid tolerance, accelerated transit and abnormal motility of the human colon induced by oleic acid. Gastroenterology 91, 100107.CrossRefGoogle ScholarPubMed
Squires, P. E., Rumsey, R. D. E., Edwards, C. A. & Read, N. W. (1992). The effect of short chain fatty acids on the contractile activity and fluid movement of the rat colon in vitro. American Journal of Physiology 262, G813G817.Google Scholar
Stephen, A. M. & Cummings, J. H. (1980). Mechanism of action of dietary fibre in the human colon. Nature 284, 283284.CrossRefGoogle ScholarPubMed
Swales, J. D., Tange, J. D. & Wrong, O. M. (1970). The influence of pH, bicarbonate and hypertonicity on the absorption of ammonia from the rat intestine. Clinical Science 39, 769779.CrossRefGoogle ScholarPubMed
Topping, D. L., Mock, S., Trimble, R. P., Storer, G. B. & Illman, R. J. (1988). Effects of varying the content and proportions of gum arabic and cellulose on caecal volatile fatty acid concentrations in the rat. Nutrition Research 8, 10131020.CrossRefGoogle Scholar
Vince, A., Killingley, M. & Wrong, O. M. (1978). Effect of lactulose on ammonia production in faecal incubation system. Gastroenterology 74, 544549.CrossRefGoogle Scholar
Walter, D. J., Eastwood, M. A. & Brydon, W. G. (1986). An experimental design to study colonic fibre fermentation in the rat: the duration of feeding. British Journal of Nutrition 55, 465479.CrossRefGoogle ScholarPubMed
Weaver, G. A., Krause, J. A., Miller, T. L. & Wolin, M. J. (1992). Corn starch fermentation by the colonic microbial community yields more butyrate than does cabbage fiber fermentation; corn starch fermentation rates correlate negatively with methanogenesis. American Journal of Clinical Nutrition 55, 7077.CrossRefGoogle ScholarPubMed
Wisker, E. & Feldheim, W. (1990). Metabolism energy of diets low or high in dietary fibre from fruits and vegetables when consumed by humans. Journal of Nutrition 120, 13311337.CrossRefGoogle ScholarPubMed
Wisker, E. & Feldheim, W. (1992). Faecal bulking and energy value of dietary fibre. In Diétary Fibre: a Component of Food, pp. 233246 [Schweizer, T. F. and Edwards, C. A., editors]. London: Springer Verlag.CrossRefGoogle Scholar
Yajima, T. (1985). Contractile effect of short chain fatty acids on the isolated colon of the rat. Journal of Physiology 368, 667678.CrossRefGoogle ScholarPubMed