Skip to main content Accessibility help

Influences of the perinatal diet on maternal and child health: insights from the GUSTO study

  • Mary Foong-Fong Chong (a1) (a2), Keith M. Godfrey (a3), Peter Gluckman (a2) (a4), Kok Hian Tan (a5) (a6), Lynette Pei-Chi Shek (a2) (a7), Michael Meaney (a2) (a8), Jerry Kok Yen Chan (a5) (a6), Fabian Yap (a6) (a9) (a10), Yung Seng Lee (a2) (a7) (a11) and Yap-Seng Chong (a2) (a12)...


Maternal and child health are intrinsically linked. With accumulating evidence over the past two decades supporting the developmental origins of health and diseases hypothesis, it is now widely recognised that nutrition in the first 1000 d sets the foundation for long-term health. Maternal diet before, during and after pregnancy can influence the developmental pathways of the fetus and lead to health consequences later in life. While maternal and infant mortality rates have declined significantly in the past two decades, the growing burden of obesity and chronic non-communicable diseases in women of reproductive age and children is on a rapid rise worldwide, in developed and developing countries. A key contributory factor is malnutrition, which is a consequence of consuming poor quality diets. Suboptimal macronutrient balance and micronutrient inadequacies can lead to undesirable maternal body composition and metabolism, in turn influencing the health of the mother and leading to longer-term metabolic and cognitive health consequences in the infant. The GUSTO (Growing Up in Singapore Towards healthy Outcomes) study, a mother–offspring multi-ethnic cohort study in Singapore, has contributed to this body of evidence over the past 10 years. This review will illustrate how nutritional epidemiological research through a birth cohort has illuminated the importance and urgency of maternal and child nutrition and health in a modern, industrialised setting. It underscores the importance of a number of critical nutrients during pregnancy, in combination with healthy dietary patterns and appropriate meal timing, for optimal maternal and child health.


Corresponding author

*Corresponding author: M. F.-F. Chong, email


Hide All
2.Knaul, FM, Langer, A, Atun, R et al. (2016) Rethinking maternal health. Lancet Glob Health 4, e227e228.
3.Collaboration NCDRF (2017) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128⋅9 million children, adolescents, and adults. Lancet 390, 26272642.
5.Marchi, J, Berg, M, Dencker, A et al. (2015) Risks associated with obesity in pregnancy, for the mother and baby: a systematic review of reviews. Obes Rev 16, 621638.
6.Barker, DJP (2012) Sir Richard Doll lecture. Developmental origins of chronic disease. Public Health 126, 185189.
7.Stephenson, J, Heslehurst, N, Hall, J et al. (2018) Before the beginning: nutrition and lifestyle in the preconception period and its importance for future health. Lancet 391, 18301841.
8.Soh, SE, Tint, MT, Gluckman, PD et al. (2014) Cohort profile: Growing Up in Singapore Towards Healthy Outcomes (GUSTO) birth cohort study. Int J Epidemiol 43, 14011409.
9.Chong, MF, Chia, AR, Colega, M et al. (2015) Maternal protein intake during pregnancy is not associated with offspring birth weight in a multiethnic Asian population. J Nutr 145, 13031310.
10.Tielemans, MJ, Garcia, AH, Peralta Santos, A et al. (2016) Macronutrient composition and gestational weight gain: a systematic review. Am J Clin Nutr 103, 8399.
11.Lai, JS, Soh, SE, Loy, SL et al. (2019) Macronutrient composition and food groups associated with gestational weight gain: the GUSTO study. Eur J Nutr 58, 10811094.
12.Chen, LW, Aris, IM, Bernard, JY et al. (2017) Associations of maternal macronutrient intake during pregnancy with infant BMI peak characteristics and childhood BMI. Am J Clin Nutr 105, 705713.
13.Aris, IM, Bernard, JY, Chen, LW et al. (2017) Infant body mass index peak and early childhood cardio-metabolic risk markers in a multi-ethnic Asian birth cohort. Int J Epidemiol 46, 513525.
14.Silverwood, RJ, De Stavola, BL, Cole, TJ et al. (2009) BMI Peak in infancy as a predictor for later BMI in the Uppsala Family Study. Int J Obes (Lond) 33, 929937.
15.Chong, MF, Ong, YL, Calder, PC et al. (2015) Long-chain polyunsaturated fatty acid status during pregnancy and maternal mental health in pregnancy and the postpartum period: results from the GUSTO study. J Clin Psychiatry 76, e848e856.
16.Loy, SL, Ng, MJ, Cheung, YB et al. (2017) Plasma omega-3 fatty acids in pregnancy are inversely associated with postpartum weight retention in a multiethnic Asian cohort. Am J Clin Nutr 105, 11581165.
17.Bernard, JY, Pan, H, Aris, IM et al. (2018) Long-chain polyunsaturated fatty acids, gestation duration, and birth size: a Mendelian randomization study using fatty acid desaturase variants. Am J Clin Nutr 108, 92100.
18.Lai, JS, Pang, WW, Cai, S et al. (2018) High folate and low vitamin B12 status during pregnancy is associated with gestational diabetes mellitus. Clin Nutr 37, 940947.
19.Yajnik, CS, Deshpande, SS, Jackson, AA et al. (2008) Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia 51, 2938.
20.Idzior-Walus, B, Cyganek, K, Sztefko, K et al. (2008) Total plasma homocysteine correlates in women with gestational diabetes. Arch Gynecol Obstet 278, 309313.
21.Zheng, LD, Linarelli, LE, Liu, L et al. (2015) Insulin resistance is associated with epigenetic and genetic regulation of mitochondrial DNA in obese humans. Clin Epigenet 7, 60.
22.Rogne, T, Tielemans, MJ, Chong, MF et al. (2017) Associations of maternal vitamin B12 concentration in pregnancy with the risks of preterm birth and low birth weight: a systematic review and meta-analysis of individual participant data. Am J Epidemiol 185, 212223.
23.Loy, SL, Lek, N, Yap, F et al. (2015) Association of maternal vitamin D status with glucose tolerance and caesarean section in a multi-ethnic Asian cohort: the Growing Up in Singapore Towards healthy Outcomes study. PLoS ONE 10, e0142239.
24.Tint, MT, Chong, MF, Aris, IM et al. (2018) Association between maternal mid-gestation vitamin D status and neonatal abdominal adiposity. Int J Obes (Lond) 42, 12961305.
25.Hannemann, A, Thuesen, BH, Friedrich, N et al. (2015) Adiposity measures and vitamin D concentrations in Northeast Germany and Denmark. Nutr Metab (Lond) 12, 24.
26.Dong, Y, Pollock, N, Stallmann-Jorgensen, IS et al. (2010) Low 25-hydroxyvitamin D levels in adolescents: race, season, adiposity, physical activity, and fitness. Pediatrics 125, 11041111.
27.Cespedes, EM & Hu, FB (2015) Dietary patterns: from nutritional epidemiologic analysis to national guidelines. Am J Clin Nutr 101, 899900.
28.Chia, AR, de Seymour, JV, Colega, M et al. (2016) A vegetable, fruit, and white rice dietary pattern during pregnancy is associated with a lower risk of preterm birth and larger birth size in a multiethnic Asian cohort: the Growing Up in Singapore Towards healthy Outcomes (GUSTO) study. Am J Clin Nutr 104, 14161423.
29.Chen, LW, Aris, IM, Bernard, JY et al. (2016) Associations of maternal dietary patterns during pregnancy with offspring adiposity from birth until 54 months of age. Nutrients 9, pii E2. Seymour, J, Chia, A, Colega, M et al. (2016) Maternal dietary patterns and gestational diabetes mellitus in a multi-ethnic Asian cohort: the GUSTO study. Nutrients 8, pii E574.
31.Nanri, A, Mizoue, T, Noda, M et al. (2010) Rice intake and type 2 diabetes in Japanese men and women: the Japan public health center-based prospective study. Am J Clin Nutr 92, 14681477.
32.Dennis, CL, Fung, K, Grigoriadis, S et al. (2007) Traditional postpartum practices and rituals: a qualitative systematic review. Womens Health (Lond) 3, 487502.
33.Pillsbury, BL (1978) ‘Doing the month’: confinement and convalescence of Chinese women after childbirth. Soc Sci Med 12, 1122.
34.Manderson, L (1981) Roasting, smoking and dieting in response to birth: Malay confinement in cross-cultural perspective. Soc Sci Med B 15, 509520.
35.Teo, C, Chia, AR, Colega, MT et al. (2018) Prospective associations of maternal dietary patterns and postpartum mental health in a multi-ethnic Asian cohort: the Growing up in Singapore Towards healthy Outcomes (GUSTO) study. Nutrients 10, pii E299.
36.Loy, SL, Chan, JK, Wee, PH et al. (2017) Maternal circadian eating time and frequency are associated with blood glucose concentrations during pregnancy. J Nutr 147, 7077.
37.Loy, SL, Wee, PH, Colega, MT et al. (2017) Maternal night-fasting interval during pregnancy is directly associated with neonatal head circumference and adiposity in girls but not boys. J Nutr 147, 13841391.
38.Tarrade, A, Panchenko, P, Junien, C et al. (2015) Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism. J Exp Biol 218, 5058.
39.Lecoutre, S & Breton, C (2015) Maternal nutritional manipulations program adipose tissue dysfunction in offspring. Front Physiol 6, 158.


Influences of the perinatal diet on maternal and child health: insights from the GUSTO study

  • Mary Foong-Fong Chong (a1) (a2), Keith M. Godfrey (a3), Peter Gluckman (a2) (a4), Kok Hian Tan (a5) (a6), Lynette Pei-Chi Shek (a2) (a7), Michael Meaney (a2) (a8), Jerry Kok Yen Chan (a5) (a6), Fabian Yap (a6) (a9) (a10), Yung Seng Lee (a2) (a7) (a11) and Yap-Seng Chong (a2) (a12)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.