Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-22T22:54:21.392Z Has data issue: false hasContentIssue false

Fermentation of non-digestible oligosaccharides by human colonic bacteria

Published online by Cambridge University Press:  28 February 2007

Glenn R. Gibson
Affiliation:
Department of Microbiology, Institute of Food Research, Earley Gate, Reading RG6 6BZ
Anne Willems
Affiliation:
Department of Microbiology, Institute of Food Research, Earley Gate, Reading RG6 6BZ
Sally Reading
Affiliation:
Department of Microbiology, Institute of Food Research, Earley Gate, Reading RG6 6BZ
M. David Collins
Affiliation:
Department of Microbiology, Institute of Food Research, Earley Gate, Reading RG6 6BZ
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
‘The nutritional consequences of complex carbohydrates’ Symposium 2
Copyright
Copyright © The Nutrition Society 1996

References

Amann, R. I., Ludwig, W. & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59, 143169.Google Scholar
Bezkorovainy, A. & Miller-catchpole, R. (1989). Biochemistry and Physiology of Bifidobacteria. Boca Raton, FL: CRC Press.Google Scholar
Bingham, S. A., Pett, S. & Day, K. C. (1990). NSP intake of a representative sample of British adults. Journal of Human Nutrition and Dietetics 3, 339344.CrossRefGoogle Scholar
Bouhnik, Y., Pochart, P., Marteau, P., Arlet, G., Goderel, I. & Rambaud, J. C. (1992). Fecal recovery in humans of viable Bifidobacterium sp. ingested in fermented milk. Gastroenterology 102, 875878.Google Scholar
Calloway, D. H. & Murphy, E. L. (1968). The use of expired air to measure intestinal gas formation. Annals of the New York Academy of Sciences 150, 8295.CrossRefGoogle ScholarPubMed
Conway, P. L. (1989). Lactobacilli: Fact and fiction. In The Regulatory and Protective Role of the Normal Microfiora, pp. 263281 [Grubb, R., Midvedt, T and Norin, E, editors]. Basingstoke: Macmillan Press.CrossRefGoogle Scholar
Cummings, J. H. (1978). Diet and transit through the gut. Journal of Plant Foods 3, 8395.Google Scholar
Cummings, J. H. (1981). Short chain fatty acids in the human colon. Gut 22, 763779.CrossRefGoogle ScholarPubMed
Cummings, J. H. (1995). Short chain fatty acids. In Human Colonic Bacteria: Role in Nutrition, Physiology and Pathology, pp. 101130 [Gibson, G. R. and Macfarlane, G. T., editors].Boca Raton: CRC Press.Google Scholar
Cummings, J. H. & MacfarlaneG. T, G. T, (1991). A review: The control and consequences of bacterial fermentation in the human colon. Journal of Applied Bacteriology 70, 443459.CrossRefGoogle ScholarPubMed
De vries, W. & Stouthamer, A. H. (1967). Carbohydrate metabolism in Bifidobacterium bifidum var pennsylvanicus. Biochimica et Biophysica Acta 136, 415425.CrossRefGoogle Scholar
Edelman, J. & Dickerson, A. G. (1966). The metabolism of fructose polymers in plants: transfructosylation in tubers of Helianthus tuberosus L. Biochemical Journal 98, 787789.Google Scholar
Englyst, H. N. & Macfarlane, G. T. (1986). Breakdown of resistant and readily digestible starch by human gut bacteria. Journal of the Science of Food and Agriculture 37, 699706.CrossRefGoogle Scholar
Figdor, S. K. & Bianchine, J. R. (1983). Caloric utilization and disposition of (14C) polydextrose in man. Journal of Agricultural and Food Chemistry 27, 14561469.Google Scholar
Friend, A., Farmer, R. E. & Shahani, K. M. (1982). Effect of feeding and intraperitoneal implantation of yoghurt culture cells on Ehrlich ascites tumor. Milchwissenschaff 37, 708710.Google Scholar
Fritz, M., Siebert, G. & Kasper, H. (1985). Dose dependence of breath hydrogen and methane in healthy volunteers after ingestion of a commercial disaccharide mixture, palatinate. British Journal of Nutrition 54, 389400.CrossRefGoogle Scholar
Fuller, R. (1989). A review: Probiotics in man and animals. Journal of Applied Bacteriology 66, 365378.Google Scholar
Fuller, R. (editor) (1994). Probiotics: The Scientific Basis. London: Chapman & Hall.Google Scholar
Fuller, R. (1994). Probiotics: an overview. In Human Health: The Contribution of Microorganisms, pp. 6173 [Gibson, S. A. W., editor]. London: Springer-Verlag.Google Scholar
Giannella, R. A., Broitma, S. A. & Zamcheck, N. (1972). Gastric acid barrier to ingested micro-organisms in man: studies in vivo and in vitro. Gut 13, 251256.CrossRefGoogle Scholar
Gibson, G. R., Beatty, E. B., Wang, X. & Cummings, J. H. (1995). Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108, 975982.CrossRefGoogle ScholarPubMed
Gibson, G. R., Macfarlane, S. & Cummings, J. H. (1990). The fermentability of polysaccharides by mixed human faecal bacteria in relation to their suitability as bulk-forming laxatives. Letters in Applied Microbiology 11, 251254.CrossRefGoogle Scholar
Gibson, G. R. & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. Journal of Nutrition 125, 14011412.CrossRefGoogle ScholarPubMed
Gibson, G. R., Saavedra, J. M., Macfarlane, S. & Macfarlane, G. T. (1996). Probiotics and intestinal infection. In Probiotics: Therapeutic and Other Benejicial Effects [Fuller, R., editor]. London: Chapman & Hall (In the Press).Google Scholar
Gibson, G. R. & Wang, X. (1994 a). Enrichment of bifidobacteria from human gut contents by oligofructose using continuous culture. FEMS Microbiology Letters 118, 121124.CrossRefGoogle ScholarPubMed
Gibson, G. R. & Wang, X. (1994 b). Bifidogenic properties of different types of fructo-oligosaccharides. Food Microbiology 11, 491498.CrossRefGoogle Scholar
Gibson, G. R. & Wang, X. (1994 c). Regulatory effects of bifidobacteria on other colonic bacteria. Journal of Applied Bacteriology 77, 412420.Google Scholar
Gibson, G. R., Willis, C. L. & Van loo, J. V. (1994). Non-digestible oligosaccharides and bifidobacteria – implications for health. International Sugar Journal 96, 381387.Google Scholar
Gibson, S. A. W. (editor) (1994). Human Health: The Contribution of Microorganisms. London: Springer-Verlag.Google Scholar
Gilliland, S. E. (1990). Health and nutritional benefits from lactic acid bacteria. FEMS Microbiology Reviews 87, 175188.CrossRefGoogle Scholar
Gilliland, S. E. & Kim, H. S. (1982). Effect of viable starter culture in yogurt on lactose utilization in humans. Journal of Dairy Science 67, 16.Google Scholar
Gilliland, S. E., Nelson, C. R. & Maxwell, C. (1985). Assimilation of cholesterol by Lactobacillus acidophilus. Applied and Environmental Microbiology 49, 377381.Google Scholar
Gilliland, S. E. & Speck, M. L. (1977). Deconjugation of bile acids by intestinal lactobacilli. Applied and Environmental Microbiology 33, 1518.CrossRefGoogle ScholarPubMed
Goldin, B. R. & Gorbach, S. L. (1992). Probiotics for humans. In Probiotics. The Scientific Basis, pp. 355376 [Fuller, R., editor]. London: Chapman & Hall.CrossRefGoogle Scholar
Goodwin, C. S., Armstrong, J. A. & Marshall, B. J. (1986). Campylobacter pyloridis, gastritis, and peptic ulceration. Journal of Clinical Pathology 39, 353365.CrossRefGoogle ScholarPubMed
Gorbach, S. L. (1990). Lactic acid bacteria and human health. Annual Medicine 22, 3741.Google Scholar
Gorbach, S. L., Nahas, L & Lerner, P. I. (1967). Studies of intestinal microflora. I: Effects of diet, age and periodic sampling on numbers of faecal microorganisms in man. Gastroenterology 53, 845855.Google Scholar
Graf, W. (1983). Studies on the therapeutic properties of acidophilus milk. In Nutrition and the Intestinal Flora. Symposia of the Swedish Nutrition Foundation XV, pp. 119121 [Halgren, B, editor]. Stockholm: Almqviste and Wiksell International.Google Scholar
Halpern, G. M., Vruwing, K. G., Van der Water, J., Keen, C. L. & Gershwin, M. E. (1991). Influence of long-term yogurt consumption in young adults. International Journal of Immunotherapy 7, 205210.Google Scholar
Hansen, R. (1985). Bifidobacteria have come to Denmark to stay. European Dairy Journal 51, 7983.Google Scholar
Hazell, S. L., Lee, A., Brady, L. & Hennessy, W. (1986). Campylobacter pyloridis and gastritis: association with intercellular spaces and adaptation to an environment of mucus as important factors in colonization of the gastric epithelium. Journal of Infectious Diseases 153, 658663.CrossRefGoogle Scholar
Hidaka, H., Eida, T., Takiwaza, T., Tokunga, T. & Tashiro, Y. (1986). Effects of fructooligosaccharides on intestinal flora and human health. Bifidobacteria Microflora 5, 3750.Google Scholar
Hill, M. J. (1990). Factors controlling the microflora of the healthy upper gastrointestinal tract. In Human Microbial Ecology, pp. 5785 [Hill, M. J. and Marsh, P. D., editors]. Boca Raton, FL: CRC Press.Google Scholar
Hoskins, L. C. & Boulding, E. T. (1981). Mucin degradation in human colonic ecosystems. Journal of Clinical Investigation 67, 163172.Google Scholar
Hudson, M. J. & Marsh, P. D. (1995). Carbohydrate metabolism in the colon. In Human Colonic Bacteria: Role in Nutrition, Physiology and Pathology, pp. 6173 [Gibson, G. R. and Macfarlane, G. T., editors]. Boca Raton, FL: CRC Press.Google Scholar
Hughes, D. B. & Hoover, D. G. (1991). Bifidobacteria: Their potential for use in American dairy products. Food Technology 45, 7483Google Scholar
Huis In't Veld, J. H. J & Havenaar, R. (1991). Probiotics and health in man and animals. Journal of Chemistry, Technology and Biotechnology 51, 562577.CrossRefGoogle Scholar
Isolauri, E., Juntunen, M., Rautanen, T., Sillanaukee, P & Koivula, T. (1991). A human Lactobacillus strain (Lactobacillus casei sp. strain GG) promotes recovery from acute diarrhea in children. Pediatrics 88, 9097.Google Scholar
Kawase, K. (1982). Effects of nutrients on the intestinal microflora of infants. Japanese Journal of Dairy Food Science 31, A241A243.Google Scholar
Kohwi, Y., Imai, K., Tamura, Z & Hasimoto, Y. (1978). Antitumor effect of Bifidobacterium infantis in mice. Gann 69, 613618.Google ScholarPubMed
Korshunov, U. M., Sinitsyna, N. A., Ginodman, G. A. & Pinegin, B. V. (1985). Correction of intestinal microflora in chemotherapeutic dysbacteriosis using bifidobacterial and lactobacterial autologous strains. Microbiology Epidemiology Immunobiology 9, 2025.Google Scholar
Langendijk, P. S., Scut, F., Jansen, G. J., Raangs, G. C., Kamphuis, G. R., Wilkinson, M. H. F & Welling, G. W. (1995). Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with specific 16s rRNA-targeted probes and its application in fecal samples. Applied and Environmental Microbiology 61, 30693075Google Scholar
Lee, A. & Hazell, S. L. (1988). Campylobacter pylori in health and disease: an ecological perspective. Microbial Ecology in Health and Disease 1, 116.CrossRefGoogle Scholar
Levitt, M. D., Gibson, G. R. & Christl, S. U. (1995) InHuman Colonic Bacteria: Role in Nutrition, Physiology and Pathology, pp. 131154 [Gibson, G. R. and Macfarlane, G. T., editors]. Boca Raton, FL: CRC Press.Google Scholar
Liescher, S. (1961). Sind die im Darm des mit Muttermilch ernährten Säuglings vorherrschenden Bifidusbakterien als nützliche Vitaminlieferanten für den Säuglingsorganismus anzusehen (Are bifidobacteria predominant in intestines of infants fed on breast milk to be regarded as useful suppliers of vitamins for the infant organism). Kinderheik 85, 265276.Google Scholar
Lin, S. Y., Ayres, J. W., Winkler, W. & Sandine, W. E. (1989). Lactobacillus effects on cholesterol: In vitro and in vivo results. Journal of Daivy Science 72, 28852899.Google Scholar
Macfarlane, G. T. & Cummings, J. H. (1991). The colonic flora, fermentation and large bowel digestive function. In The Large Intestine: Physiology, Pathophysiology and Disease, pp. 5192 [Phillips, S. F., Pemberton, J. H. and Shorter, R. G., editors]. New York: Raven Press.Google Scholar
Macfarlane, G. T., Gibson, G. R., Drasar, B. S. & Cummings, J. H. (1995). Metabolic significance of the gut microflora. In Gastrointestinal and Oesophageal Pathology, pp. 249274 [Whitehead, R., editor]. Edinburgh: Churchill Livingstone.Google Scholar
Macfarlane, S. & Macfarlane, G. T. (1995). Proteolysis and amino acid fermentation. In Human Colonic Bacteria: Role in Nutrition, Physiology and Pathology, pp. 75100 [Gibson, G. R. and Macfarlane, G. T., editors]. Boca Raton, FL: CRC Press.Google Scholar
Mcgroaty, J. A., Hawthorn, A. A. & Reid, G. (1988). Anti-tumour activity of lactobacilli in vitro. Microbios Letters 39, 105112.Google Scholar
Marshall, B. J. (1994). Helicobacter pylori. American Journal of Gastroenterology 89, S116S128.Google Scholar
May, T., Mackie, R. I. & Garleb, K. A. (1995). Effect of dietary oligosaccharides on intestinal growth of and tissue damage by Clostridium difficile. In Microecology and Therapy. Proceedings of the XVIII International Symposium on Microbial Ecology and Disease, pp. 158170 [Onderdonk, A. B., Heidt, P. J. and Rusch, V., editors]. Herbom-Dill: Institute for Microecology.Google Scholar
Metchnikoff, E. (1907). The Prolongation of Life. London: William Heinemann.Google Scholar
Minagawa, K. (1970). Studies on the importance of lysozyme in infants nutrition. Acta Paediatrics Japan 74, 761767.Google Scholar
Mizutani, T. & Mitsuoka, T. (1980). Inhibitory effect of some intestinal bacteria on liver tumorigenesis in gnotobiotic C3H/HE male mice. Cancer Letters 11, 8995.CrossRefGoogle ScholarPubMed
Nishizawa, Y. (1960). Physiological activity of bifidobacteria. Shonika Shinryo 23, 12131218.Google Scholar
Oku, T. (1994). Special physiological functions of newly developed mono- and oligosaccharides. In Functional Foods: Designer Foods, Phannafoods and Nutraceuticals, pp. 202218 [Goldberg, I., editor].London: Chapman & Hall.Google Scholar
Perdigon, G. & Alvarez, S. (1992). Probiotics and the immune state. In Probiotics: The ScientiJic Basis, pp. 146180 [Fuller, R., editor]. London: Chapman & Hall.Google Scholar
Pochart, P., Mariean, P., Bouhnik, Y., Goderel, I., Bourlioux, P. & Rambaud, J. C. (1992).Survival of bifidobacteria ingested via fermented milk during their passage through the human small intestine: an in vivo study using intestinal perfusion. American Journal of Clinical Nutrition 55, 7880.Google Scholar
Quigley, M. E. & Kelly, S. M. (1995). Structure, function, and metabolism of host mucus glycoproteins. In Human Colonic Bacteria: Role in Nutrition, Physiology and Pathology, pp. 175199 [Gibson, G. R. and Macfarlane, G. T., editors]. Boca Raton, FL: CRC Press.Google Scholar
Rasic, J. L. (1983). The role of dairy foods containing bifido and acidophilus bacteria in nutrition and health. European Dairy Journal 4, 8088.Google Scholar
Rathbone, B. J. & Heatley, R. V., (editors) (1992). In Helicobacter pylori and Gastroduodenal Disease. Oxford: Blackwell Scientific Publications.Google Scholar
Reddy, G. V., Friend, B. A., Shahani, K. M. & Farmer, R. E. (1983). Antitumor activity of yogurt components. Journal of Food Protection 46, 811.Google Scholar
Roberfroid, M. B., Bornet, F., Bouley, C & Cummings, J. H. (1995). Colonic microflora: Nutrition and health. Nutrition Reviews 53, 127130.Google Scholar
Roberfroid, M., Gibson, G. R. & Dezenne, N. (1993). Biochemistry of oligofmctose, a non-digestible dietary fiber: an approach to calculate its caloric value. Nutrition Reviews 51, 137–146.Google Scholar
Rowland, I. R. (1988). Role of the Gut Flora in Toxicity and Cancer. London: Academic Press.Google Scholar
Rowland, I. R. & Tanaka, R. (1993). The effects of transgalactosylated oligosaccharides on gut flora metabolism in rats associated with human faecal microflora. Journal of Applied Bacteriology 74, 667674.CrossRefGoogle ScholarPubMed
Rumessen, J. J., Bode, S., Hamberg, O. & Hoyer, E. G. (1990). Fructans of Jerusalem artichokes: intestinal transport, absorption, fermentation and influence on blood glucose, insulin and C-peptide responses in healthy subjects. American Journal of Clinical Nutrition 52, 675681.CrossRefGoogle ScholarPubMed
Rumney, C. & Rowland, I. R. (1995). Non-digestible oligosaccharides – potential anti-cancer agents? British Nutrition Foundation Nutrition Bulletin 20, 194203CrossRefGoogle Scholar
Saavedra, J. M., Bauman, N. A., Oung, I., Perman, J. A. & Yolken, R. H. (1994). Feeding of Bijdobacterium bijdum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet 344, 10461049.Google Scholar
Sanders, M. E. (1994). Lactic acid bacteria as promoters of human health. In Functional Foods: Designer Foods, Pharmafoods and Nutraceuticals, pp. 294322 [Goldberg, I., editor]. London: Chapman & Hall.Google Scholar
Sekine, K., Toida, T., Saito, M., Kuboyama, M., Kawashima, T.&Hashimoto, Y. (1985). A new morphologically characterized cell wall preparation (whole peptidoglycan) from Bifidobacteriurn infantis with a higher efficacy on the regression of an established tumor in mice. Cancer Research 45, 13001307.Google Scholar
Snel, J., Heinen, P. P., Blok, H. J., Carman, R. J., Duncan, A. J., Allen, P. C. & Collins, M. D. (1995). Comparison of 16S rRNA sequences of segmented filamentous bacteria isolated from mice, rats and chickens and proposal of ‘Candidatus arthromitus’. International Journal of Systematic Bacteriology 45, 17801782.Google Scholar
Stahl, D. A. (1993). The natural history of microorganisms. ASM News 59, 609613.Google Scholar
Tadesse, K., Smith, D. & Eastwood, M. A. (1980). Breath hydrogen (H2) and methane (CH4) excretion patterns in normal man and in clinical patients. Quarterly Journal of Experimental Physiology 65, 8597.Google Scholar
Tanaka, R., Takayama, H., Morotomi, M., Kuroshima, T., Ueyama, S., Matsumoto, K., Kuroda, A. & Mutai, M. (1983). Effects of administration of TOS and Bifidobacterium breve 4006 on the human fecal flora. Bifidobacteria Microflora 2, 1724.Google Scholar
Tannock, G. W. (1995). The role of probiotics. In Human Colonic Bacteria: Role in Nutrition, Physiology, and Pathology, pp. 257271 [Gibson, G. R. and Macfarlane, G. T., editors]. Boca Raton, FL: CRC Press.Google Scholar
Tsai, H. H., Sunderland, D., Gibson, G. R., Hart, C. A. & Rhodes, J. M. (1992). A novel mucin sulphatase from human faeces: its identification, purification and characterisation. Clinical Science 82, 447454.Google Scholar
Van Loo, J., Coussement, P., De Leenheer, L., Hoebregs, H & Smits, G. (1995). On the presence of inulin and oligofructose as natural ingredients in the Western diet. CRC Reviews in Food Science and Technology 35, 525552.Google Scholar
Wang, X. & Gibson, G. R. (1993). Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. Journal of Applied Bacteriology 75, 373380.CrossRefGoogle ScholarPubMed
Ward, D. M., Bateson, M. M., Weller, R. & Ruff-Roberts, A. L. (1992). Ribosomal RNA analysis of microorganisms as they occur in nature. Advances in Microbial Ecology. 12, 219286.Google Scholar
Woese, C. R. (1987). Bacterial evolution. Microbiological Reviews 51, 221271.CrossRefGoogle ScholarPubMed
Yamazaki, S., Machii, K., Tsuyuki, S., Momose, H., Kawashima, T. & Ueda, K. (1985). Immunological responses to monoassociated Bifidobacterium longum and their relation to prevention of bacterial invasion. Immunology 56, 4350.Google ScholarPubMed