Skip to main content Accessibility help
×
Home

The effect of iodine deficiency during pregnancy on child development

  • Sarah C. Bath (a1)

Abstract

It is well known that severe iodine deficiency during pregnancy may cause impaired brain development in the child, with effects on cognitive and motor function, hearing and speech. Whether mild-to-moderate deficiency also affects neurological development is less well known, but in the past decade a number of observational studies have been conducted to answer this question and these studies are reviewed in this article. The picture is now emerging that even mild-to-moderate iodine deficiency during pregnancy may be associated with subtle impairments in cognition and school performance, although the evidence from randomised controlled trials is still lacking. As global efforts to eradicate iodine deficiency in populations continue, it is more likely that mild-to-moderate, rather than severe, iodine deficiency will be the issue of concern in pregnancy, and therefore further research in regions of mild-to-moderate deficiency is required to strengthen the research base and to inform public-health policy.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The effect of iodine deficiency during pregnancy on child development
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The effect of iodine deficiency during pregnancy on child development
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The effect of iodine deficiency during pregnancy on child development
      Available formats
      ×

Copyright

Corresponding author

Corresponding author: Sarah C. Bath, email s.bath@surrey.ac.uk

References

Hide All
1.WHO, UNICEF & ICCIDD (2007) Assessment of Iodine Deficiency Disorders and Monitoring their Elimination. Geneva: WHO.
2.Zimmermann, MB (2009) Iodine deficiency. Endocr Rev 30, 376408.
3.Iodine Global Network (2017) Global scorecard of iodine nutrition in 2017 in the general population and in pregnant women. Available at: http://www.ign.org/cm_data/IGN_Global_Scorecard_AllPop_and_PW_May2017.pdf (accessed August 2018).
4.European Food Safety Authority (2014) Scientific opinion on dietary reference values for iodine. EFSA J 12, 3660.
5.Gizak, M, Rogers, L, Gorstein, J et al. (2018) Global iodine status in school-age children, women of reproductive age, and pregnant women in 2017. In Nutrition 2018, American Society for Nutrition annual conference, 9–12 June, 2018 Boston, MA, USA. Available at: http://www.ign.org/cm_data/251_Gizak_poster.pdf (accessed August 2018).
6.Bath, SC (2017) The challenges of harmonising the iodine supply across Europe. Lancet Diabetes Endocrinol 5, 411412.
7.Williams, GR (2008) Neurodevelopmental and neurophysiological actions of thyroid hormone. J Neuroendocrinol 20, 784794.
8.Velasco, I, Bath, SC & Rayman, MP (2018) Iodine as essential nutrient during the first 1000 days of life. Nutrients 10, pii: E290.
9.Moog, NK, Entringer, S, Heim, C et al. (2017) Influence of maternal thyroid hormones during gestation on fetal brain development. Neuroscience 342, 68100.
10.UNICEF (2018) Guidance on the Monitoring of Salt Iodization Programmes and Determination of Population Iodine Status. Available at: https://www.unicef.org/nutrition/files/Monitoring-of-Salt-Iodization.pdf (accessed June 2018).
11.Chen, ZP & Hetzel, BS (2010) Cretinism revisited. Best Pract Res Clin Endocrinol Metab 24, 3950.
12.Pharoah, PO (1993) Iodine-supplementation trials. Am J Clin Nutr 57, 276S279S.
13.Zimmermann, MB (2009) Iodine deficiency in pregnancy and the effects of maternal iodine supplementation on the offspring: a review. Am J Clin Nutr 89, 668S672S.
14.Zhou, SJ, Anderson, AJ, Gibson, RA et al. (2013) Effect of iodine supplementation in pregnancy on child development and other clinical outcomes: a systematic review of randomized controlled trials. Am J Clin Nutr 98, 12411254.
15.Costeira, MJ, Oliveira, P, Santos, NC et al. (2011) Psychomotor development of children from an iodine-deficient region. J Pediatr 159, 447453.
16.Murcia, M, Rebagliato, M, Iniguez, C et al. (2011) Effect of iodine supplementation during pregnancy on infant neurodevelopment at 1 year of age. Am J Epidemiol 173, 804812.
17.van Mil, NH, Tiemeier, H, Bongers-Schokking, JJ et al. (2012) Low urinary iodine excretion during early pregnancy is associated with alterations in executive functioning in children. J Nutr 142, 21672174.
18.Bath, SC, Steer, CD, Golding, J et al. (2013) Effect of inadequate iodine status in UK pregnant women on cognitive outcomes in their children: results from the Avon Longitudinal Study of Parents and Children (ALSPAC). Lancet 382, 331337.
19.Hynes, KL, Otahal, P, Hay, I et al. (2013) Mild iodine deficiency during pregnancy is associated with reduced educational outcomes in the offspring: 9-year follow-up of the gestational iodine cohort. J Clin Endocrinol Metab 98, 19541962.
20.Rebagliato, M, Murcia, M, Alvarez-Pedrerol, M et al. (2013) Iodine supplementation during pregnancy and infant neuropsychological development: INMA Mother and Child Cohort Study. Am J Epidemiol 177, 944953.
21.Ghassabian, A, Steenweg-de Graaff, J, Peeters, RP et al. (2014) Maternal urinary iodine concentration in pregnancy and children's cognition: results from a population-based birth cohort in an iodine-sufficient area. BMJ Open 4, e005520.
22.Murcia, M, Espada, M, Julvez, J et al. (2017) Iodine intake from supplements and diet during pregnancy and child cognitive and motor development: the INMA Mother and Child Cohort Study. J Epidemiol Community Health 72, 216222.
23.Hynes, KL, Otahal, P, Burgess, JR et al. (2017) Reduced educational outcomes persist into adolescence following mild iodine deficiency in Utero, despite adequacy in childhood: 15-year follow-up of the gestational iodine cohort investigating auditory processing speed and working memory. Nutrients 9, pii: E1354.
24.Abel, MH, Caspersen, IH, Meltzer, HM et al. (2017) Suboptimal maternal iodine intake is associated with impaired child neurodevelopment at 3 years of age in the Norwegian Mother and Child Cohort Study. J Nutr 147, 13141324.
25.Abel, MH, Ystrom, E, Caspersen, IH et al. (2017) Maternal iodine intake and offspring attention-deficit/hyperactivity disorder: results from a large prospective cohort study. Nutrients 9, pii: E1239.
26.Markhus, MW, Dahl, L, Moe, V et al. (2018) Maternal iodine status is associated with offspring language skills in infancy and toddlerhood. Nutrients 10, pii: E1270.
27.Abel, MH, Brandlistuen, RE, Caspersen, IH et al. (2018) Language delay and poorer school performance in children of mothers with inadequate iodine intake in pregnancy: results from follow-up at 8 years in the Norwegian Mother and Child Cohort Study. Eur J Nutr [Epublication ahead of print version].
28.Knudsen, N, Christiansen, E, Brandt-Christensen, M et al. (2000) Age- and sex-adjusted iodine/creatinine ratio. A new standard in epidemiological surveys? Evaluation of three different estimates of iodine excretion based on casual urine samples and comparison to 24 h values. Eur J Clin Nutr 54, 361363.
29.Bath, SC, Furmidge-Owen, VL, Redman, CW et al. (2015) Gestational changes in iodine status in a cohort study of pregnant women from the United Kingdom: season as an effect modifier. Am J Clin Nutr 101, 11801187.
30.Moleti, M, Trimarchi, F, Tortorella, G et al. (2016) Effects of maternal iodine nutrition and thyroid status on cognitive development in offspring: a pilot study. Thyroid 26, 296305.
31.Gordon, RC, Rose, MC, Skeaff, SA et al. (2009) Iodine supplementation improves cognition in mildly iodine-deficient children. Am J Clin Nutr 90, 12641271.
32.Zimmermann, MB, Connolly, K, Bozo, M et al. (2006) Iodine supplementation improves cognition in iodine-deficient schoolchildren in Albania: a randomized, controlled, double-blind study. Am J Clin Nutr 83, 108114.
33.Bell, MA, Ross, AP & Goodman, G (2016) Assessing infant cognitive development after prenatal iodine supplementation. Am J Clin Nutr 104, Suppl. 3, 928S-934S.
34.Zoeller, RT & Rovet, J (2004) Timing of thyroid hormone action in the developing brain: clinical observations and experimental findings. J Neuroendocrinol 16, 809818.
35.Romano, R, Jannini, EA, Pepe, M et al. (1991) The effects of iodoprophylaxis on thyroid size during pregnancy. Am J Obstet Gynecol 164, 482485.
36.Liesenkotter, KP, Gopel, W, Bogner, U et al. (1996) Earliest prevention of endemic goiter by iodine supplementation during pregnancy. Eur J Endocrinol 134, 443448.
37.Glinoer, D, De Nayer, P, Delange, F et al. (1995) A randomized trial for the treatment of mild iodine deficiency during pregnancy: maternal and neonatal effects. J Clin Endocrinol Metab 80, 258269.
38.Nohr, SB, Jorgensen, A, Pedersen, KM et al. (2000) Postpartum thyroid dysfunction in pregnant thyroid peroxidase antibody-positive women living in an area with mild to moderate iodine deficiency: is iodine supplementation safe? J Clin Endocrinol Metab 85, 31913198.
39.Pedersen, KM, Laurberg, P, Iversen, E et al. (1993) Amelioration of some pregnancy-associated variations in thyroid function by iodine supplementation. J Clin Endocrinol Metab 77, 10781083.
40.Antonangeli, L, Maccherini, D, Cavaliere, R et al. (2002) Comparison of two different doses of iodide in the prevention of gestational goiter in marginal iodine deficiency: a longitudinal study. Eur J Endocrinol 147, 2934.
41.Zimmermann, MB (2007) The adverse effects of mild-to-moderate iodine deficiency during pregnancy and childhood: a review. Thyroid 17, 829835.
42.Harding, KB, Pena-Rosas, JP, Webster, AC et al. (2017) Iodine supplementation for women during the preconception, pregnancy and postpartum period. Cochrane Database Syst Rev 3, Cd011761.
43.Brucker-Davis, F, Ganier-Chauliac, F, Gal, J et al. (2015) Neurotoxicant exposure during pregnancy is a confounder for assessment of iodine supplementation on neurodevelopment outcome. Neurotoxicol Teratol 51, 4551.
44.Zhou, SJ, Skeaff, SA, Ryan, P et al. (2015) The effect of iodine supplementation in pregnancy on early childhood neurodevelopment and clinical outcomes: results of an aborted randomised placebo-controlled trial. Trials 16, 563.
45.Brucker-Davis, F, Panaia-Ferrari, P, Gal, J et al. (2013) Iodine supplementation throughout pregnancy does not prevent the drop in FT4 in the second and third trimesters in women with normal initial thyroid function. Eur Thyroid J 2, 187194.
46.National Health and Medical Research Council (2010) Iodine supplementation for pregnant and breastfeeding women. January 2010. Available at: www.nhmrc.gov.au/guidelines/publications/new45 (accessed October 2011).
47.Stagnaro-Green, A, Abalovich, M, Alexander, E et al. (2011) Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid 21, 10811125.
48.Gowachirapant, S, Jaiswal, N, Melse-Boonstra, A et al. (2017) Effect of iodine supplementation in pregnant women on child neurodevelopment: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 5, 853863.
49.Bath, SC (2017) Iodine supplementation in pregnancy in mildly deficient regions. Lancet Diabetes Endocrinol 5, 840841.
50.WHO Secretariat, Andersson, M, de Benoist, B et al. (2007) Prevention and control of iodine deficiency in pregnant and lactating women and in children less than 2-years-old: conclusions and recommendations of the Technical Consultation. Public Health Nutr 10, 16061611.
51.Rebagliato, M, Murcia, M, Espada, M et al. (2010) Iodine intake and maternal thyroid function during pregnancy. Epidemiology 21, 6269.
52.Manousou, S, Eggertsen, R, Hulthen, L et al. (2016) Iodine status and effects of supplementation with 150 μg/day iodine during pregnancy in Sweden: a randomised placebo-controlled trial. Eur Thyroid J 5, Suppl. 1, 89.
53.Manousou, S, Johansson, B, Chmielewska, A et al. (2018) Role of iodine-containing multivitamins during pregnancy for children's brain function: protocol of an ongoing randomised controlled trial: the SWIDDICH study. BMJ Open 8, e019945.
54.Henry, LA, Cassidy, T, McLaughlin, M et al. (2018) Folic acid supplementation throughout pregnancy: psychological developmental benefits for children. Acta Paediatr 107, 13701378.
55.Direção-Geral da Saúde (DGS) (2013) Orientação da Direção-Geral da Saúde. Aporte de iodo em mulheres na preconceção, gravidez e amamentação (Iodine intake in preconception, pregnancy and breastfeeding women). Available at: http://www.dgs.pt/?cr=24648 (accessed August 2018).
56.Norwegian Directorate of Health (2018) Dietary Intake for Pregnant Women 2018. Available at: https://helsedirektoratet.no/folkehelse/graviditet-fodsel-og-barsel/graviditet-og-svangerskap/kosthold-for-gravide (accessed March 2018).
57.Henjum, S, Lilleengen, AM, Aakre, I et al. (2017) Suboptimal iodine concentration in breastmilk and inadequate iodine intake among lactating women in Norway. Nutrients 9, pii: E643.
58.State of Israel Ministry of Health (2017) Proper Nutrition During Pregnancy: Special nutritional ingredients and altering their consumption to meet requirements during the period of pregnancy. Available at: https://www.health.gov.il/English/Topics/Pregnancy/during/Pages/proper_nutrition_during_pregnancy.aspx (accessed August 2018).
59.Bath, SC, Jolly, KB & Rayman, MP (2013) Iodine supplements during and after pregnancy. JAMA 309, 1345.
60.Berbel, P, Mestre, JL, Santamaria, A et al. (2009) Delayed neurobehavioral development in children born to pregnant women with mild hypothyroxinemia during the first month of gestation: the importance of early iodine supplementation. Thyroid 19, 511519.
61.Velasco, I, Carreira, M, Santiago, P et al. (2009) Effect of iodine prophylaxis during pregnancy on neurocognitive development of children during the first two years of life. J Clin Endocrinol Metab 94, 32343241.
62.Santiago, P, Velasco, I, Muela, JA et al. (2013) Infant neurocognitive development is independent of the use of iodised salt or iodine supplements given during pregnancy. Br J Nutr 110, 831839.
63.Moleti, M, Di Bella, B, Giorgianni, G et al. (2011) Maternal thyroid function in different conditions of iodine nutrition in pregnant women exposed to mild-moderate iodine deficiency: an observational study. Clin Endocrinol (Oxf) 74, 762768.
64.Katko, M, Gazso, AA, Hircsu, I et al. (2017) Thyroglobulin level at week 16 of pregnancy is superior to urinary iodine concentration in revealing preconceptual and first trimester iodine supply. Matern Child Nutr [Epublication ahead of print version].
65.Moleti, M, Lo Presti, VP, Campolo, MC et al. (2008) Iodine prophylaxis using iodized salt and risk of maternal thyroid failure in conditions of mild iodine deficiency. J Clin Endocrinol Metab 93, 26162621.
66.Robinson, SM, Crozier, SR, Miles, EA et al. (2018) Preconception maternal iodine status is positively associated with IQ but not with measures of executive function in childhood. J Nutr 148, 959966.
67.Bath, SC, Button, S & Rayman, MP (2014) Availability of iodised table salt in the UK – is it likely to influence population iodine intake? Public Health Nutr 17, 450454.
68.Bath, SC, Hill, S, Infante, HG et al. (2017) Iodine concentration of milk-alternative drinks available in the UK in comparison with cows’ milk. Br J Nutr 118, 525532.
69.Zimmermann, M & Delange, F (2004) Iodine supplementation of pregnant women in Europe: a review and recommendations. Eur J Clin Nutr 58, 979984.
70.O'Kane, SM, Pourshahidi, LK, Farren, KM et al. (2016) Iodine knowledge is positively associated with dietary iodine intake among women of childbearing age in the UK and Ireland. Br J Nutr 116, 1738–1735.
71.Combet, E, Bouga, M, Pan, B et al. (2015) Iodine and pregnancy – a UK cross-sectional survey of dietary intake, knowledge and awareness. Br J Nutr 114, 108117.
72.De Leo, S, Pearce, EN & Braverman, LE (2017) Iodine supplementation in women during preconception, pregnancy, and lactation: current clinical practice by U.S. obstetricians and midwives. Thyroid 27, 434439.
73.Guess, K, Malek, L, Anderson, A et al. (2017) Knowledge and practices regarding iodine supplementation: a national survey of healthcare providers. Women Birth 30, e56e60.
74.Charlton, K, Yeatman, H, Lucas, C et al. (2012) Poor knowledge and practices related to iodine nutrition during pregnancy and lactation in Australian women: pre- and post-iodine fortification. Nutrients 4, 13171327.

Keywords

Related content

Powered by UNSILO

The effect of iodine deficiency during pregnancy on child development

  • Sarah C. Bath (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.