Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-18T03:43:55.617Z Has data issue: false hasContentIssue false

An energy sensor for control of energy intake

Published online by Cambridge University Press:  18 April 2008

Mark I. Friedman
Affiliation:
Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Mechanisms of energy compensation’
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Adolph, E. F. (1947). Urges to eat and drink in rats. American Journal of Physiology 151, 110125.CrossRefGoogle ScholarPubMed
Booth, D. A. (1972). Postabsorptively induced suppression of appetite and the energostatic control of feeding. Physiology and Behavior 9, 199202.CrossRefGoogle ScholarPubMed
Campfield, L. A. & Smith, F. J. (1990). Systemic factors in the control of food intake. Evidence for pattern-signals. In Handbook of Behavioural Neurobiology: Food and Water Intake, pp. 183206. [Stricker, E. M. editor]. New York: Plenum Publishing.CrossRefGoogle Scholar
Collier, G. (1986). The dialogue between the house economist and the resident physiologist. Nutrition Behavior 3, 926.Google Scholar
Cunningham, C. C., Malloy, C. R. & Radda, G. K. (1986). Effects of fasting and acute ethanol admínístratíon the energy state of in vivo liver as measured by 31P-NMR spectroscopy. Biochimica et Biophysica Acta 885, 1222.CrossRefGoogle Scholar
Dills, W. L., Murphy-Kothe, J. & Klinger, J. (1992). Absorption, excretion and tissue distribution of 1-[3H]-2, 5-anhydro-D-mannitol in female Wistar rats. Biochemical Archives 8, 6974.Google Scholar
Epstein, A. N., Nicolaidis, S. & Miselis, R. (1975). The glucoprivic control of food intake and the giucost theory of feeding behavior. In Neural Integration of Physiological Mechanisms and Behavior, pp. 148168 [Mogenson, G. J. and Calaresu, F. R. editors]. Toronto: University of Toronto Press.CrossRefGoogle Scholar
Friedman, M. I. (1990). Making sense out of calories. In Handbook of Behavioral Neurobiology: Food Water Intake, pp. 513529 [Stricker, E. M., editors]. New York: Plenum Publishing.CrossRefGoogle Scholar
Friedman, M. I. (1991). Metabolic control of calorie intake. In Chemical Senses, vol. 4, Appetite and Nutrition, pp. 1938 [Friedman, M. I., Tordoff, M. G. & Kare, M. R., editors]. New York: Marcel Dekker.Google Scholar
Friedman, M. I. (1995). Control of energy intake by energy metabolism. American Journal of Clinical Nutrition 62, Suppl., 1096S1100S.CrossRefGoogle ScholarPubMed
Friedman, M. I. (1997). Fuel partitioning and food intake. American Journal of Clinical Nutrition (In the Press).Google Scholar
Friedman, M. I. & Strieker, E. M. (1976). The physiological psychology of hunger: A physiological perspective. Psychological Review 83, 409431.CrossRefGoogle Scholar
Friedman, M. I. & Tordoff, M. G. (1996). Hepatic metabolic signal for control of food intake: Stimulus generation, signal transduction and neural transmission. In Liver Innervation, pp. 373380 [Shimazu, T., editor]. London: John Libby.Google Scholar
Friedman, M. I. & Tordoff, M. G. & Ramirez, I. (1986). Integrated metabolic control of food intake. Brain Research Bulletin 17, 855859.CrossRefGoogle ScholarPubMed
Geary, N., Le Sauter, J. & Moh, U. (1993). Glucagon acts in liver to control spontaneous meal size in rats. American Journal of Physiology 264, R116R122.Google ScholarPubMed
Grill, H. J., Friedman, M. I., Norgren, R., Scalera, G. & Seeley, R. (1995). Parabrachial nucleus lesions impir the feeding response elicited by 2,5-anhydro-D-mannitol. American Journal of Physiology 268, R676R682.Google Scholar
Harris, R. B. S. & Martin, R. J. (1984). Lipostatic theory of energy balance: Concepts and signals. Nutrition and Behavior 1, 253275.Google Scholar
Horn, C. C. & Friedman, M. I. (1995). Synergistic increase in food intake and brain Fos-like immunoreactivity (Fos-li) after treatment with methyl palmoxirate (MP) and 2.5-anhydro-d-mannitol. Obesity Research 3, Suppl., 330S.Google Scholar
Horn, C. C. & Friedman, M. I. (1996). Diet-related increases in food intake and brain Fos-like immunoreactivity (Fos-li) after treatment with 2,5-anhydro-D-mannitol (2,5-AM). FASEB Journal 10, A823.Google Scholar
Kang, S. S. (1979). The effects of dietary sucrose and streptozotocin-diabetes on blood and liver constituents. Nutrition and Metabolism 23, 327334.CrossRefGoogle ScholarPubMed
Kassil, V. G., Ugolev, A. M. & Chernigovskii, V. N. (1970). Regulation of selection and consumption of food and metabolism. Progress in Physiological Sciences 1, 387404.Google Scholar
Koch, J. E., Graczyk-Millbrandt, G., Osbakken, M. D., Blum, H., Ketchum, M. A., Nuss, J. L. & Friedman, M. I. (1995a). Diet-related effects of 2, 5-anhydro-D-mannitol on food intake and liver ATP. Obesity Research 3, Suppl. 3, 375S.Google Scholar
Koch, J. E., Ulrich, P., Nuss, J. & Friedman, M. I. (1995b). Time course of the effect of 2, 5-anhydro-D-mannitol on food intake and liver ATP. Obesity Research 3, Suppl. 3, 375S.Google Scholar
Langhans, W. & Scharrer, E. (1992). Metabolic control of eating. World Review of Nutrition and Dietetics 70, 167.CrossRefGoogle ScholarPubMed
Le Magnen, J., Devos, M., Gaudilliere, J. P., Louis-Sylvestre, J. & Tallon, S. (1973). Role of a lipostatic mechanism in regulation by feeding of energy balance in rats. Journal of Comparative and Physiological Psychology 84, 123.CrossRefGoogle ScholarPubMed
Mayer, J. (1955). Regulation of energy intake and the body weight: the glucostatic theory and lipostatic hypothesis. Annals of the New York Academy of Sciences 63, 1542.CrossRefGoogle ScholarPubMed
Nicolaidis, S. (1974). Short-term and long-term regulation of energy balance. Proceedings of the 26th International Congress of Physiological Sciences (New Delhi) 10, 122123.Google Scholar
Nicolaidis, S. & Even, P. C. (1990). The ischymetric control of feeding. International Journal of Obesity 14, Suppl. 3, 3552.Google ScholarPubMed
Novin, D. & VanderWeele, D. A. (1977). Visceral involvement in feeding: there is more to regulation than the hypothalamus. Progress in Psychobiology and Physiological Psychology 7, 193241.Google Scholar
Novin, D., VanderWeele, D. A. & Rezek, M. (1973). Infusions of 2-deoxy-D-glucose into the hepatic portal system causes eating: evidence for peripheral glucoreceptors. Science 181, 858860.CrossRefGoogle ScholarPubMed
Panksepp, J. (1971). Effects of fats, proteins, and carbohydrates on food intake in rats. Psychonomic Monograph Supplement 4, 8695.Google Scholar
Park, C. R., Seeley, R. J., Benthem, L., Friedman, M. I. & Woods, S. C. (1995). Whole body energy expenditure and fuel oxidation after 2, 5-anhydro-D-mannitol administration. American Journal of Physiology 268, R299R302.Google ScholarPubMed
Rawson, N. E., Blum, H., Osbakken, M. D. & Friedman, M. I. (1994a). Hepatic phosphate trapping, decreased ATP and increased feeding after 2, 5-anhydro-D-mannitol. American Journal of Physiology 266, R112R117.Google ScholarPubMed
Rawson, N. E. & Friedman, M. I. (1994). Phosphate-loading prevents the decrease in ATP and increase in food intake produced by 2, 5-anhydro-D-mannitol. American Journal of Physiology 266, R1792R1796.Google ScholarPubMed
Rawson, N. E., Ulrich, P. M. & Friedman, M. I. (1994b). L-Ethionine, an amino acid analogue, stimulates eating in rats. American Journal of Physiology 267, R612R615.Google ScholarPubMed
Rawson, N. E., Ulrich, P. M. & Friedman, M. I. (1996). Fatty acid oxidation modulates the eating response to the fructose analogue, 2, 5-anhydro-D-mannitol. American Journal of Physiology 271, R144148.Google Scholar
Riquelme, P. T., Kneer, N. M., Wernette-Hammond, M. E. & Lardy, H. S. (1985). Inhibition of glycolysis in isolated rat hepatocytes and in Ehrlich ascites cells. Proceedings of the National Academy of Sciences USA 82, 7882.CrossRefGoogle ScholarPubMed
Ritter, S., Dihn, T. T. & Friedman, M. I. (1994). Induction of Fos-like immunoreactivity (Fos-li) and stimulation of feeding by 2, 5-anhydro-D-mannitol (2, 5-AM) require the vagus nerve. Brain Research 646, 5364.CrossRefGoogle ScholarPubMed
Russek, M. (1963). An hypothesis on the participation of hepatic glucoreceptors in the control of food intake. Nature 197, 7980.CrossRefGoogle Scholar
Russek, M. (1981). Current status of the hepatostatic theory of food intake control. Appetite 2, 137143.CrossRefGoogle ScholarPubMed
Russell, P. J. D. & Mogenson, G. J. (1976). Drinking and feeding induced by jugular and portal infusions of 2-deoxy-D-glucose. American Journal of Physiology 229, 10141018.CrossRefGoogle Scholar
Shull, K. H., McConomy, J., Vogt, M., Castillo, A. & Farber, E. (1966). Journal of Biological Chemistry 241, 50605070.CrossRefGoogle Scholar
Smith, L. J., Murphy, E., Gabel, S. A. & London, R. E. (1987). In vivo 31P NMR studies on the hepatic response to L-ethionine in anesthetized rats. Toxicology and Applied Pharmacology 88, 346353.CrossRefGoogle ScholarPubMed
Start, C. & Newsholme, E. A. (1968). The effects of starvation and alloxan-diabetes on the contents of citrate and other metabolic intermediates in rat liver. Biochemical Journal 107, 411415.CrossRefGoogle ScholarPubMed
Tordoff, M. G. & Friedman, M.I. (1986). Hepatic portal glucose infusions decrease food intake and increase food preference. American Journal of Physiology 251, R191R196.Google ScholarPubMed
Tordoff, M. G. & Friedman, M. I. (1988). Hepatic control of feeding: effect of glucose, fructose and mannitol infusion. American Journal of Physiology 254, R969R976.Google ScholarPubMed
Tordoff, M. G., Hopfenbeck, J., Butcher, L. L. & Novin, D. (1982). A peripheral locus for amphetamine anorexia. Nature 279, 148150.CrossRefGoogle Scholar
Tordoff, M. G., Rafka, R., DiNovi, M. J. & Friedman, M. I. (1988). 2,-5-Anhydro-D-mannitoi: A fructose-analogue that increases food intake in rats. American Journal of Physiology 254, R150R153.Google ScholarPubMed
Tordoff, M. G., Rawson, N. & Friedman, M. I. (1991). 2, 5-Anhydro-D mannitol acts in liver to initiate feeding. American Journal of Physiology 261, R283R288.Google Scholar
Tordoff, M. G., Schulkin, J. & Friedman, M. I. (1986). Hepatic contribution to satiation of salt appetite in rats. American Journal of Physiology 251, R1095R1102.Google ScholarPubMed
Tordoff, M. G., Tluczek, J. P. & Friedman, M. I. (1989). Effect of hepatic portal glucose concentration on food intake and metabolism. American Journal of Physiology 257, R1474R1480.Google ScholarPubMed