Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-18T06:22:55.978Z Has data issue: false hasContentIssue false

Prospection of ISSR primers and population genetic characterization of Paratecoma peroba (Record) Kuhlm.

Published online by Cambridge University Press:  04 September 2023

Tábatta Caroline Cerri França
Affiliation:
Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
Adelson Lemes da Silva Júnior*
Affiliation:
Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
Leticia Rigo Tavares
Affiliation:
Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
Lucimara Cruz de Souza
Affiliation:
Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
Fábio Demolinari de Miranda
Affiliation:
Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
Marcos Vinicius Winckler Caldeira
Affiliation:
Universidade Federal do Espírito Santo, Jerônimo Monteiro, Espírito Santo, Brazil
*
Corresponding author: Adelson Lemes da Silva Júnior; Email: adelsonlemes@yahoo.com.br

Abstract

The objective of this study is to prospect ISSR primers (Inter Simple Sequence Repeats) and, further genetic characterization in Paratecoma peroba. For this, leaf samples of 20 individuals were collected in a forest fragment, located in a private area, close to the Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo, in the city of Alegre, ES, Brazil. For this, 43 ISSR primers were tested, and 10 primers were selected, which provided a total of 91 bands, with 57 polymorphic bands, resulting in 62.63% polymorphism. The polymorphic information content (PIC = 0.27) indicated moderate informativeness of the primers and, therefore, they are efficient in studies with the species. However, the values found for genetic parameters such as the number of observed (AO = 1.68) and effective (AE = 1.41) alleles and, the genetic diversity indices of Nei (H* = 0.23) and Shannon (I* = 0.35) indicate the occurrence of homozygous loci and low genetic diversity in the population. On the other hand, the genetic structure evaluated by the Bayesian approach revealed the formation of three genetic groups distributed in all sampled individuals, inferring once again about the occurrence of loci in homozygosity. Therefore, the connection of neighbouring fragments and the establishment of individuals obtained from other sources could increase the genetic diversity of the population and reduce the possible effects of depression by inbreeding and genetic drift.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

In memory.

References

Aguilar, LG, López, AMS, Aceitun, CB, Ávila, JAC, Guerreiro, JAL and Quesada, R (2016) A DNA source selection for downstream applications based on DNA quality indicators analysis. Biopreservation and Biobanking 14: 264270.CrossRefGoogle Scholar
Alvares, CA, Stape, JL, Sentelhas, PC, Moraes Gonçalves, JL and Sparovek, G (2013) Köppen's climate classification map for Brazil. Meteorologische Zeitschrift 22: 711728.10.1127/0941-2948/2013/0507CrossRefGoogle Scholar
Basey, AC, Fant, JB and Kramer, AT (2015) Producing native plant materials for restoration: 10 rules to collect and maintain genetic diversity. Nativeplants 16: 3753.Google Scholar
CNCFlora – Centro Nacional de Conservação da Flora (2022) Paratecoma peroba in Lista Vermelha da flora brasileira versão 2012.2. Available at http://cncflora.jbrj.gov.br/portal/pt-br/profile/Paratecomaperoba. Accessed in: 26 May 2022.Google Scholar
Cruz, CD (2016) Genes Software-extended and integrated with the R, Matlab and Selegen. Acta Scientiarum Agronomy 38: 547552.CrossRefGoogle Scholar
Doyle, JJ and Doyle, JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bull 19: 1115.Google Scholar
Earl, DA and Vonholdt, BM (2012) Structure Harvester: a website and program for visualizing structure output and implementing the Evanno method. Conservation Genetics Resources 4: 359361.CrossRefGoogle Scholar
Evanno, G, Regnaut, S and Goudet, J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14: 26112620.CrossRefGoogle ScholarPubMed
Falush, D, Stephens, M and Pritchard, J (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes 7: 574578.CrossRefGoogle ScholarPubMed
Fraga, CN, Formigoni, MH and Chaves, FG (2019) Fauna E Flora Ameaçadas de Extinção no Estado do Espírito Santo. Santa Teresa-ES: Instituto Nacional da Mata Atlântica, p. 434.Google Scholar
França, TCC, Tavares, LR, Silva Júnior, AL, Miranda, FD, Vargas, LB, Abreu, KMP and Caldeira, MVW (2022) Genetic characterization of remaining populations of Paratecoma peroba, an endangered and endemic species of the Atlantic Forest. CERNE 28: 110.CrossRefGoogle Scholar
Gentry, AH (1974) Flowering phenology and diversity in tropical Bignoniaceae. Biotropica 6: 6468.CrossRefGoogle Scholar
Gentry, AH (1980) Bignoniaceae: part I (Crescentieae and Tourrettieae). Flora Neotropica 25: 1130.Google Scholar
Hoban, S, Archer, FI, Bertola, LD, Bragg, JG, Breed, MF, Bruford, MW, Coleman, MA, Ekblom, R, Funk, WC, Grueber, CE, Hand, BK, Jaffé, R, Jensen, E, Johnson, JS, Kershaw, F, Liggins, L, MacDonald, AJ, Mergeay, J, Miller, JM, Muller-Karger, F, O'Brien, D, Paz-Vinas, I, Potter, KM, Razgour, O, Vernesi, C and Hunter, ME (2022) Global genetic diversity status and trends: towards a suite of essential biodiversity variables (EBVs) for genetic composition. Biological Reviews 97: 128.10.1111/brv.12852CrossRefGoogle ScholarPubMed
Howard, JT, Pryce, JE, Baes, C and Maltecca, C (2017) Invited review: inbreeding in the genomics era: inbreeding, inbreeding depression, and management of genomic variability. Journal of Dairy Science 100: 60096024.CrossRefGoogle ScholarPubMed
Lewontin, RC (1972) The apportionment of human diversity. Evolutionary Biology 6: 381398.Google Scholar
Lins, BLA and Nascimento, MT (2010) Fenologia de Paratecoma peroba (Bignoniaceae) em uma floresta estacional semidecidual do norte fluminense, Brasil. Rodriguésia 61: 559568.CrossRefGoogle Scholar
Liu, XF, Liu, G, Li, XM, Zhang, PJ, Huang, M, Gao, LQ, Fang, L and Zhang, GW (2022) Analysis of genetic diversity and relationship of Jacaranda mimosifolias based on ISSR molecular markers technique. International Journal of Molecular Evolution and Biodiversity 12: 18.Google Scholar
Martinelli, G and Moraes, MA (2013) Livro Vermelho da Flora do Brasil. Andrea Jakobsson: Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, p. 1102.Google Scholar
Mojena, R (1977) Hierarchical grouping methods and stopping rules: an evaluation. The Computer Journal 20: 359363.10.1093/comjnl/20.4.359CrossRefGoogle Scholar
Nadeem, MA, Nawaz, MA, Shahid, MQ, Doğan, Y, Comertpay, G, Yıldız, M, Hatipoğlu, R, Ahmad, F, Alsaleh, A, Labhane, N, Özkan, H, Chung, G and Baloch, FS (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment 32: 261285.CrossRefGoogle Scholar
Nei, M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583590.CrossRefGoogle ScholarPubMed
Ng, WL and Tan, SG (2015) Inter-simple sequence repeat (ISSR) markers: are we doing it right. ASM Science Journal 9: 3039.Google Scholar
Ortega-Ramirez, ME, Mendez-Arcos, JL, Torres-Lamas, S and Sanchez-Mendez, FR (2021) Pollen management and controlled pollination in Eucalyptus urophylla. Journal of Natural and Agricultural Sciences 8: 17.CrossRefGoogle Scholar
Pádua, JAR, Rocha, LF, Brandão, MM, Vieira, FA and Carvalho, D (2021) Title: priority areas for genetic conservation of Eremanthus erythropappus (DC.) MacLeish in Brazil. Genetic Resources and Crop Evolution 68: 24832494.CrossRefGoogle Scholar
Prado, PI, Lewinsohn, TM, Carmo, RL and Hogan, DJ (2002) Ordenação multivariada na ecologia e seu uso em ciências ambientais. Ambiente & Sociedade 10: 117.Google Scholar
Santo-Silva, EE, Almeida, WR, Tabarelli, M and Peres, CA (2016) Habitat fragmentation and the future structure of tree assemblages in a fragmented Atlantic forest landscape. Plant Ecology 217: 11291140.CrossRefGoogle Scholar
Shannon, CE and Weaver, WA (1949) Mathematical model of communication. The Bell System Technical Journal 27: 379423.CrossRefGoogle Scholar
Silva, JM, Moraes, MLT and Sebbenn, AM (2004) Autocorrelação espacial em população natural de Terminalia argentea Mart et Succ. no cerrado de Selvíria, MS. Scientia Forestalis 66: 9499.Google Scholar
Silva, JO, Santos, JO, Marques, IMR and Andrade, IM (2015) Seleção de primers para análise populacional em Pistia stratiotes L. utilizando marcadores ISSR. Revista Brasileira de Biodiversidade e Biotecnologia 1: 406406.Google Scholar
Silva Júnior, AL, Cabral, RLR, Sartori, L, Miranda, FD, Caldeira, MVW, Moreira, SO, Godinho, TO and Oliveira, FS (2022) Molecular markers applied to the genetic characterization of Dalbergia nigra: implications for conservation and management. Trees 1: 119.Google Scholar
Souza, LC, Silva, AL Jr, Souza, MC, Kunz, SH and Miranda, FD (2017) Genetic diversity of Plathymenia reticulata Benth. in fragments of Atlantic Forest in southeastern Brazil. Genetics and Molecular Research 16: 113.10.4238/gmr16039775CrossRefGoogle ScholarPubMed
Tatikonda, L, Wani, SP, Kannan, S, Beerelli, N, Sreedevi, TK, Hoisington, DA, Devi, P and Varshney, RK (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L. biofuel plant. Plant Science 176: 505513.CrossRefGoogle ScholarPubMed
Vieira, AAR, Souza, AC, Silva Júnior, AL, Alves, BQ, Miranda, FD, Moreira, SO and Caldeira, MVW (2022) Diversity and genetic structure of Astronium concinnum Schott ex Spreng. in conservation units. Plant Genetic Resources: Characterization and Utilization 19: 530537.CrossRefGoogle Scholar
Warneke, CR, Caughlin, T, Damschen, EI, Haddad, NM, Levey, DJ and Brudvig, LA (2021) Habitat fragmentation alters the distance of abiotic seed dispersal through edge effects and direction of dispersal. Ecology 103: 18.Google ScholarPubMed
Yeh, FC and Boyle, TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany 129: 156157.Google Scholar
Zorzanelli, JPF, Kunz, SH, Carrijo, TT, Miranda, FD, Souza, LC and Silva Júnior, AL (2022) Bases for genetic conservation of Freziera atlantica, an endangered wood species and endemic to the Atlantic Forest hotspot. Trees 36: 10051015.CrossRefGoogle Scholar