Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-15T17:55:34.307Z Has data issue: false hasContentIssue false

Genetic diversity in safflower (Carthamus tinctorius L.) germplasm for vegetative and agronomic characteristics in semi-arid regions

Published online by Cambridge University Press:  09 May 2024

Naser Sabaghnia*
Affiliation:
Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran
Amin Ahadnezhad
Affiliation:
Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran
Mohsen Janmohammadi
Affiliation:
Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran
*
Corresponding author: Naser Sabaghnia; Email: sabaghnia@yahoo.com

Abstract

Safflower, a semiarid crop, contains a healthy oil with high unsaturated fatty acids. Genetically diverse accessions are important for genetic maintenance of safflower and breeding proposes. The objectives of present investigation were to evaluate the morphological variation of 100 safflower accessions across two years (2022 and 2023), to explore similar genotypic groups and to identify the higher contribution of traits with to the observed variability. The highest coefficient of variation (CV) was observed for seeds per secondary capitulum, number of capitula per plant and weight of lateral capitulum in the first year and the highest CV values were observed for number of capitula per plant and capitula per lateral branch in the second year. The factor analysis identified five factors in the first year and six factors in the second as yield components, height, seed yield, capitulum diameter and phonology while number of branches was identified as the extra factor in the second year. Results showed that the variation of morphologic traits was made up of from the most measured traits of safflower. We defined seven distinct clusters, which made it possible to differentiate safflower accessions based on measured traits across two years. Of 45 accessions were grouped in similar clusters across two years, without any or similar genotype by environment interaction. Some high yielding accessions like C-47 and Lesaf-175 can be entered directly in multi-environmental trials for cultivar release proposes. The recognized variation improves as a good resource, indicating an important issue for future projects for safflower germplasm maintenance and breeding.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baljani, R, Shekari, F and Sabaghnia, N (2016) Multivariate analysis of yield components and some morphological traits of safflower (Carthamus tinctorius L.) genotypes. Philippine Agricultural Scientist 99, 326331.Google Scholar
Brace, N, Kemp, R and Snelgar, R (2006) SPSS for Psychologists: A Guide to Data Analysis Using SPSS for Windows. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.Google Scholar
Carlberg, C (2014) Statistical Analysis: Microsoft Excel 2013. Sebastopol, CA: Que Publishing.Google Scholar
Ebrahimi, H, Sabaghnia, N, Javanmard, A and Abbasi, A (2023) Genotype by trait biplot analysis of trait relations in safflower. Agrotechniques in Industrial Crops 3, 6773.Google Scholar
Ghanbari, A, Soltani-Najafabadi, M, Abbasi, AR and Bihamta, MR (2022) Functional factor analysis in safflower. Journal of Crop Breeding 14, 163173.Google Scholar
Gholami, M, Sabaghnia, N, Nouraein, M, Shekari, F and Janmohammadi, M (2018) Cluster analysis of some safflower genotypes using a number of agronomic characteristics. Journal of Crop Breeding 10, 159166.Google Scholar
Hassani, SMR, Talebi, R, Pourdad, SS, Naji, AM and Fayaz, F (2020a) In-depth genome diversity, population structure and linkage disequilibrium analysis of worldwide diverse safflower (Carthamus tinctorius L.) accessions using NGS data generated by DArTseq technology. Molecular Biology Reports 47, 21232135.CrossRefGoogle ScholarPubMed
Hassani, SMR, Talebi, R, Pourdad, SS, Naji, AM and Fayaz, F (2020b) Morphological description, genetic diversity and population structure of safflower (Carthamus tinctorius L.) mini core collection using SRAP and SSR markers. Biotechnology and Biotechnological Equipment 34, 10431055.CrossRefGoogle Scholar
Kadirvel, P, Ravi, D, Mukta, N, Montoya-Coronado, MCL, Ghuge, SB, Singh, J, Singh V, Shinde SK, Deshmukh SN, Yadav P and Varaprasad, KS (2017) Genetic distinctiveness of safflower cultivars of India and Mexico as revealed by SSR markers. Plant Genetic Resources 15, 474487.CrossRefGoogle Scholar
Kiran, BU, Mukta, N, Kadirvel, P, Alivelu, K, Senthilvel, S, Kishore, P and Varaprasad, KS (2017) Genetic diversity of safflower (Carthamus tinctorius L.) germplasm as revealed by SSR markers. Plant Genetic Resources 15, 111.CrossRefGoogle Scholar
Majidi, MM and Zadhoush, S (2014) Molecular and morphological variation in a world-wide collection of safflower. Crop Science 54, 21092119.CrossRefGoogle Scholar
Manikanta, C, Pasala, R, Kaliamoorthy, S, Basavaraj, PS, Pandey, BB, Vadlamudi, DR, Nidamarty, M, Guhey, A and Kadirvel, P (2023) Safflower (Carthamus tinctorius L.) crop adaptation to residual moisture stress: conserved water use and canopy temperature modulation are better adaptive mechanisms. PeerJ 11, e15928.CrossRefGoogle ScholarPubMed
Manvelian, J, Weisany, W, Tahir, NAR, Jabbari, H and Diyanat, M (2021) Physiological and biochemical response of safflower (Carthamus tinctorius L.) cultivars to zinc application under drought stress. Industrial Crops and Products 172, 114069.CrossRefGoogle Scholar
Oarabile, P, Emongor, VE, Oagile, O and Phuduhudu, D (2016) Evaluation of safflower genotypes under the semi-arid conditions in Botswana. Ruforum Working Document Series 14, 665670.Google Scholar
Ojaq, SMM, Mozafari, H, Jabbari, H and Sani, B (2020) Evaluation of yield of safflower (Carthamus tinctorius L.) genotypes under semi-arid conditions. Plant Genetic Resources 18, 270277.CrossRefGoogle Scholar
Rostami-Ahmadvandi, H and Faghihi, A (2021) Adapted oilseed crops with the ability to grow economically in dryland conditions in Iran. Agrotechniques in Industrial Crops 1, 122128.Google Scholar
Sabaghnia, N, Ahadnezhad, A and Janmohammdi, M (2015) Genetic variation in garden cress (Lepidium sativum L.) germplasm as assessed by some morphological traits. Genetic Resources and Crop Evolution 62, 733745.CrossRefGoogle Scholar
Sarto, MVM, Bassegio, D, Rosolem, CA and Sarto, JRW (2018) Safflower root and shoot growth affected by soil compaction. Bragantia 77, 348355.CrossRefGoogle Scholar
Segundo-Ortin, M and Calvo, P (2022) Consciousness and cognition in plants. Wiley Interdisciplinary Reviews: Cognitive Science 13, e1578.Google ScholarPubMed
Slafer, GA, García, GA, Serrago, RA and Miralles, DJ (2022) Physiological drivers of responses of grains per m2 to environmental and genetic factors in wheat. Field Crops Research 285, 108593.CrossRefGoogle Scholar
Toledo-Aguilar, R, López-Sánchez, H, López, PA, Aguilar-Rincón, VH, Vaquera-Huerta, H, Santacruz-Varela, A, González-Hernández, VA, López-Pérez, A, Hernández-Galeno, CA and Ramírez-Meraz, M (2023) Morphological diversity of ancho Chile pepper landraces from Mexico. Plant Genetic Resources 21, 340348.CrossRefGoogle Scholar
Van Rheenen, W, Peyrot, WJ, Schork, AJ, Lee, SH and Wray, NR (2019) Genetic correlations of polygenic disease traits: from theory to practice. Nature Reviews Genetics 20, 567581.CrossRefGoogle ScholarPubMed
Supplementary material: File

Sabaghnia et al. supplementary material

Sabaghnia et al. supplementary material
Download Sabaghnia et al. supplementary material(File)
File 20.6 KB