Skip to main content Accessibility help

Comparison of flavonoid contents and antioxidant activities of Vicia species

  • Kyung Jun Lee (a1), Jung-Ro Lee (a1), Hyo-Jeong Kim (a1), Sebastin Raveendar (a1), Gi-An Lee (a1), Young-Ah Jeon (a1), Eunseong Park (a1), Kyung-Ho Ma (a1), Sok-Young Lee (a1) and Jong-Wook Chung (a1)...


A total of 27 accessions from ten Vicia species were investigated for flavonoid contents, total polyphenol contents, and DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS [2,2′-azinobis(3-ethylbenzothiazoline 6-sulfonic acid)] free radical-scavenging activities. The results revealed that NAC17 (V. monantha) and NAC14 (V. hyrcanica) had the highest total flavonoid content (1.42 ± 0.09 mg/g) and total polyphenol content [124.2 ± 0.5 μg/gallic acid equivalents (GAE) mg], respectively. Among four flavonoids, naringenin was detected at high concentrations in Vicia species. The DPPH and ABTS assays showed values in the range of 57.2 (IC50) (NAC13, V. faba) to 6530.0 (IC50) (NAC24, V. sativa subsp. nigra) and 19.1 μg/Trolox mg (NAC7, V. cracca) to 253.4 μg/Trolox mg (NAC13, V. faba), respectively. Among ten Vicia species, V. monantha and V. hyrcanica had the highest flavonoid content (1.31 ± 0.09 mg/g) and total polyphenol content (116.5 ± 2.0 μg/GAE mg), respectively. The highest antioxidant activity was detected in V. faba. These results will expand the flavonoid database and provide valuable information on Vicia species for the development of functional foods or feed-additive resources.


Corresponding author

*Corresponding author. E-mail:


Hide All
Ajila, CM and Prasada Rao, UJ (2008) Protection against hydrogen peroxide induced oxidative damage in rat erythrocytes by Mangifera indica L. peel extract. Food and Chemical Toxicology 46: 303309.
Akyuz, M (2013) Nutritive value: flavonoid content and radical scavenging activity of the truffle (Terfezia boudieri Chatin). Journal of Soil Science and Plant Nutrition 13: 143151.
Alzueta, C, Caballero, R, Rebole, A, Trevino, J and Gill, A (2001) Crude protein fraction in common vetch fresh forage during pod filling. Journal of Animal Science 79: 24492455.
Amarowicz, R, Troszynska, A, Barylko-Pikielna, N and Shahidi, F (2004) Polyphenolics extracts from legume seeds: correlations between total antioxidant activity, total phenolics content, tannins content and astringency. Journal of Food Lipids 11: 278286.
Amarowicz, R, Troszynska, A and Pegg, RB (2008) Antioxidative and radical scavenging effects of phenolics from Vicia sativum . Fitoterapia 79: 121122.
Annadurai, T, Muralidharan, AR, Joseph, T, Hsu, MJ, Thomas, PA and Geraldine, P (2012) Antihyperglycemic and antioxidant effects of a flavanone, naringenin, in streptozotocin–nicotinamide-induced experimental diabetic rats. Journal of Physiology and Biochemistry 68: 307318.
Asen, S (1984) High pressure liquid chromatographic analysis of flavonoid chemical markers in petals from Gerbera flowers as an adjunct for cultivar and germplasm identification. Phytochemistry 23: 25232526.
Campeol, E, Catal, S, Cremonni, R and Morelii, I (2000) Flavonoids analysis of Vicia species of Narbonensis complex: V. kalakhensis Khatt., Maxt. and Bisby and V. eristalioides Maxt. Caryologia 53: 6368.
Campeol, E, Cioni, PL, Flamini, G, Rossi, B and Cremonini, R (2003) Flavonoids analysis of four Vicia species of Narbonensis complex in two different vegetative phases. Caryologia 56: 365371.
Choi, JS, Park, KY, Moon, SH, Rhee, SH and Young, HS (1994) Antimutagenic effect of plant flavonoids in the Salmonella assay system. Archives of Pharmacal Research 17: 7175.
Croteau, R, Kutchan, TM and Lewis, NG (2000) Natural products (secondary metabolites). In: Buchanan, BB, Gruissem, W and Jones, RL (eds) Biochemistry and Molecular Biology of Plants. Rockville, MD: American Society of Plants Physiologists, pp. 12501318.
Gee, JM and Johnson, IT (2001) Polyphenolic compounds: interactions with the gut and implications for human health. Current Medicinal Chemistry 8: 12451255.
Harborne, JB and Turner, BL (1984) Plant Chemiosystematics. London: Academic Press.
Hou, WC, Lin, RD, Cheng, KT, Hung, YT, Cho, CH, Chen, CH, Hwang, SY and Lee, MH (2003) Free radical scavenging activity of Taiwanese native plants. Phytomedicine 10: 170175.
Jun, YM, Kim, EH, Lim, JJ, Kim, SH, Kim, SH, Lin, JD, Cheoi, DS, Cheoi, YS, Yu, CY and Chung, IM (2012) Variation of phenolic compounds contents in cultivated Astragalus membranaceus . Korean Journal of Medicinal Crop Science 20: 447453.
Koh, E, Wimalasiri, KMS, Chassy, AW and Mitchell, AE (2009) Content of ascorbic acid: quercetin, kaempferol and total phenolics in commercial broccoli. Journal of Food Composition and Analysis 22: 637643.
Kumar, MS, Unnikrishnan, MK, Patra, S, Murthy, K and Srinivasan, KK (2003) Naringin and naringenin inhibit nitrite-induced methemoglobin formation. Pharmazie 58: 564566.
Lee, DJ and Lee, JY (2004) Antioxidant activity by DPPH assay. Korean Journal of Crop Science 49: 187194.
Lee, CH, Jeong, TS, Choi, YK, Hyun, BH, Oh, GT, Kim, EH, Kim, JR, Han, JI and Bok, SH (2001) Antiatherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and Mcp-1 in high cholesterol-fed rabbits. Biochemical and Biophysical Research Communications 284: 681688.
Lee, MH, Yoon, S and Moon, JO (2004) The flavonoid naringenin inhibits dimethyl nitrosamine-induced liver damage in rats. Biological and Pharmaceutical Bulletin 27: 7276.
Lee, M-H, Huh, D, Jo, D, Lee, G-D and Yoon, S-R (2007) Flavonoids components and functional properties of citrus peel hydrolysate. Journal of the Korean Society of Food Science and Nutrition 36: 13581364.
Lien, TF, Yeh, HS and Su, WT (2008) Effect of adding extracted hesperetin, naringenin and pectin on egg cholesterol, serum traits and antioxidant activity in laying hens. Archives of animal nutrition 62: 3343.
Lin, BQ and Chiou, GCY (2009) Antioxidant activity of naringenin on various oxidants induced damages in ARPE-19 cells and HUVEC. International Journal of Ophthalmology 2: 113117.
Malaveille, C, Hautefeuille, A, Pignatelli, B, Talaska, G, Vineis, P and Bartsch, H (1996) Dietary phenolics as anti-mutagens and inhibitors of tobacco-related DNA adduction in the urothelium of smokers. Carcinogenesis 17: 21932200.
Mensor, LL, Menezes, FS, Leitao, GG, Reis, AS, dos Santos, TC, Coube, CS and Leitao, SG (2001) Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research 15: 127130.
Middleton, E Jr, Kandaswami, C and Theoharides, TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological Reviews 52: 67751.
Mikic, A, Mihailovic, V, Hauptvogel, P, Cupina, B, Petrovic, M, Krstic, D, Jovicic, D, Milosevic, B and Hauptvogel, R (2009) Wild populations of vetches (Vicia) as forage and green manure crops for temperate regions. Irish Journal of Agricultural and Food Research 48: 265.
Mossi, AJ, Cansian, RL, Carvalho, AZ, Dariva, C, Oliveira, JV, Mazutti, MA, Filho, NI and Echeverrigaray, S (2004) Extraction and characterization of volatile compounds in Maytenus ilicifolia, using high-pressure CO2 . Fitoterapia 75: 166178.
Nijveldt, RJ, van Nood, E, van Hoorn, DE, Boelens, PG, van Norren, K and van Leeuwen, PA (2001) Flavonoids: a review of probable mechanisms of action and potential applications. American Journal Of Clinical Nutrition 74: 418425.
Nordberg, J and Arner, ESJ (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biology and Medicine 31: 12871312.
Olszewska, M (2007) Quantitative HPLC analysis of flavonoids and chlorogenic acid in the leaves and inflorescences of Prunus aerotina EHRH. Acta Chromatographica 19: 253269.
Patil, AB and Jadhav, AS (2013) Flavonoids an antioxidants: a review. International Journal of Pharmaceutical and Biological Sciences Research and Development 2: 720.
Perrino, P and Maruca, G (1989) Flavonoid taxonomic analysis of Vicia species of section Faba. Canadian Journal of Botany 67: 35293533.
Re, R, Pellegrini, N, Proteggente, A, Pannala, A, Yang, M and Rice-Evans, C (1999) Antioxidant activity applying an improved ABTS radical cation decolorisation assay. Free Radical Biology and Medicine 26: 12311237.
Stanojevic, L, Stankovic, M, Nikolic, V, Nikolic, L, Ristic, D, Canadanovic-Brunet, J and Tumbas, V (2009) Antioxidant activity and total phenolic and flavonoid contents of Hieracium pilosella L. extracts. Sensor 9: 57025714.
Takahashi, T, Kobori, M, Shinmoto, H and Tsushida, T (1998) Structure–activity relationship of flavonoids and the induction of granulolytic or monocytic differentiation in HL 60 human myeloid leukemia cells. Bioscience, Biotechnology, and Biochemistry 62: 21992204.
Van Sumere, CF, van de Casteele, K, de Loose, RE and Heursel, J (1985) Reversed phase HPLC analysis of flavonoids and the biochemical identification of cultivars of evergreen Azalea. In: Van Sumere, CF and Lea, PJ (eds) The Biochemistry of Plant Phenolics. Oxford, UK: Clarendon Press, pp. 1743.
Waterhouse, AL (2002) Determination of total phenolics. In: Wrolstad, RE (ed.) Current Protocols in Food Analytical Chemistry. New York: John Wiley & Sons, pp. 14.
Webb, M and Harborne, JB (1991) Leaf flavonoid aglycone patterns and sectional classification in the genus Vicia (Leguminosae). Biochemical Systematics and Ecology 19: 8186.
Wildman, REC (2001) Nutraceuticals: a brief review of historical and teleological aspects. In: Wildman, REC (ed.) Handbook of Nutraceuticals and Functional Foods. Boca Raton, FL: CRC Press, pp. 112.
Willcox, JK, Ash, SL and Catignani, GL (2004) Antioxidants and prevention of chronic disease. Critical Reviews in Food Science and Nutrition 44: 275295.
Winkel-Shirley, B (2001) Flavonoid biosynthesis. A colourful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology 126: 485493.
Winkel-Shirley, B (2002) Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology 5: 218223.
Wojciechowski, MF (2003) Reconstructing the phylogeny of legumes (Leguminosae): an early 21st century perspective. In: Klitgaard, BB and Bruneau, A (eds) Advances in Legume Systematics. Kew, UK: Royal Botanic Gardens, pp. 535.
Young, ND, Mudgeand, J and Ellis, THN (2003) Legume genomes: more than peas in a pod. Current Opinion in Plant Biology 6: 199204.


Type Description Title
Supplementary materials

Lee supplementary material
Table S1

 Unknown (20 KB)
20 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed