Skip to main content Accessibility help
×
Home

Characterization of HMW glutenin subunit Bx7OE and its distribution in common wheat and related species

  • Jie Li (a1), Caixia Han (a1), Shoumin Zhen (a1), Xiaohui Li (a1) and Yueming Yan (a1)...

Abstract

The overexpression of wheat Bx7 subunit (Bx7OE) encoded by the Glu-B1al allele is originated from a duplication event of the Bx7 gene, and has a positive effect on gluten strength. Thus, it is an important genetic resource for wheat quality improvement. In this study, the Bx7OE subunit from a large number of bread wheat and related species was characterized by sodium dodecyl sulphate–polyacrylamide gel electrophoresis, reversed-phase high-performance liquid chromatography (RP-HPLC) and Sequence-Tagged sites (STS) markers. Only 31 bread wheat varieties were found to carry Bx7OE. RP-HPLC quantification analysis revealed that the mean proportion of the Bx7OE subunit to the total amount of high-molecular-weight glutenin subunits among the 31 bread wheat varieties was 41.8%, which is much higher than that of varieties with the normal Bx7 subunit (generally at 30%). Flour quality analysis of seven representative varieties with Bx7OE and three with the normal Bx7 subunit showed that the varieties with Bx7OE generally displayed better gluten strength than those with the normal Bx7 subunit. STS markers demonstrated that, in addition to the 31 bread wheat varieties with Bx7OE, no PCR products were obtained from the related Triticum and Aegilops species. This suggests that the retroelement-mediated recombination event at the Glu-B1 locus could have occurred more recently, later than the formation of hexaploid wheat. The Bx7OE subunit is mainly distributed in some bread wheat varieties from American countries with a low frequency, which is of particular importance for the quality improvement of wheat gluten.

Copyright

Corresponding author

* Corresponding authors. E-mail: lixiaohui1978@163.com (X. Li); yanym@cnu.edu.cn (Y. Yan)

References

Hide All
AACC, (2000) Approved Methods of the American Association of the Cereal Chemists, 10th edn. St. Paul, MN: AACC.
An, XL, Zhang, Q, Yan, YM, Li, QY, Zhang, YZ, Wang, AL, Pei, Y, Tian, J, Wang, H, Hsam, SLK and Zeller, FJ (2006) Cloning and molecular characterization of three novel LMW-i glutenin subunit genes from cultivated einkorn (Triticum monococcum L.). Theoretical and Applied Genetics 113: 383395.
Branlard, G and Dardevet, M (1985) Diversity of grain protein and bread wheat quality. II. Correlation between high molecular weight subunits of glutenin and flour quality characteristics. Journal of Cereal Science 3: 345354.
Brenchley, R, Spannagl, M, Pfeifer, M, Barker, GLA, D'Amore, R, Allen, AM, McKenzie, N, Kramer, M, Kerhornou, A, Bolser, D, Kay, S, Waite, D, Trick, M, Bancroft, I, Gu, Y, Huo, N, Luo, MC, Sehgal, S, Gill, BS, Kianian, S, Anderson, O, Kersey, P, Dvořák, J, McCombie, WR, Hall, A, Mayer, KFX, Edwards, KJ, Bevan, MW and Hall, N (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491: 705710.
Butow, BJ, Ma, W, Gale, KR, Cornish, GB, Rampling, L, Larroque, O, Morell, MK and Bekes, F (2003) Molecular discrimination of 1Bx7 alleles demonstrates that a highly expressed high molecular weight glutenin allele has a major impact on wheat flour dough strength. Theoretical and Applied Genetics 107: 15241532.
Butow, BJ, Gale, KR, Ikea, J, Juhasz, A, Bedo, Z, Tamas, L and Gianibelli, MC (2004) Dissemination of the highly expressed 1Bx7 glutenin subunit (Glu-B1al allele) in wheat as revealed by novel PCR markers and RP-HPLC. Theoretical and Applied Genetics 109: 15251535.
Cloutier, S, Banks, T and Nilmalgoda, S (2005) Molecular understanding of wheat evolution at the Glu-B1 locus. In: Proceedings of the International Conference on Plant Genomics and Biotechnology: Challenges and Opportunities, Science press. Raipur, India . p. 40.
Cornish, GB, Vawser, MJ and Tonkin, RE (2005) Extra-strong dough properties associated with over-expression of HMW glutenin subunit GLU-B1 7X. In: Cauvain, SP, Salmon, SS and Young, LS (eds) Using Cereal Science and Technology for the Benefit of Consumers. Proceedings of the 12th International ICC Cereal and Bread Congress, Springer Link press. Harrogate, UK, 23–26th May 2004 . pp. 298302.
Dong, K, Hao, C, Wang, A, Cai, M and Yan, Y (2009) Characterization of HMW glutenin subunits in bread and tetraploid wheats by reversed-phase high-performance liquid chromatography. Cereal Research Communications 37: 6573.
D'Ovidio, R, Masci, S, Porceddu, E and Kasarda, D (1997) Duplication of the high molecular weight glutenin subunit gene in bread wheat (Triticum aestivum L.) cultivar ‘Red River 68’. Plant Breeding 116: 525531.
Dvořák, J, McGuire, PE and Cassidy, B (1988) Apparent sources of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome 30: 680689.
Dvořák, J, Resta, P and Kota, RS (1990) Molecular evidence on the origin of wheat chromosomes 4A and 4B. Genome 33: 3039.
Gao, LY, Ma, WJ, Chen, J, Wang, K, Li, J, Wang, SL, Bekes, F, Appels, R and Yan, YM (2010) Characterization and comparative analysis of wheat high molecular weight glutenin subunits by SDS–PAGE, RP-HPLC, HPCE, and MALDI-TOF-MS. Journal of Agriculture and Food Chemistry 58: 27772786.
Gianibelli, MC, Larroque, OR, MacRitchie, F and Wrigley, CW (2001) Biochemical, enetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chemistry 78: 635646.
Gill, BS, Appels, R, Botha-Oberholster, AM, Buell, CR, Bennetzen, JL, Chalhoub, B, Chumley, F, Dvořák, J, Iwanaga, M, Keller, B, Li, W, McCombie, WR, Ogihara, Y, Quetier, F and Sasaki, T (2004) A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics 168: 10871096.
He, ZH, Liu, L, Xia, XC, Liu, JJ and Pena, RJ (2005) Composition of HMW and LMW glutenin subunits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheats. Cereal Chemistry 82: 345350.
Lerner, SE, Ponzio, NR and Rogers, WJ (2003) Relationship of over-expression of high molecular weight glutenin subunit Bx7 with gluten strength. In: Proceedings of the 10th International Wheat Genetics Symposium, Paestum, Italy, 1–6th September 2003 . pp. 13601362.
Lukow, OM, Forsyth, SA and Payne, PI (1992) Over-production of HMW glutenin subunits coded on chromosome 1B in common wheat, Triticum aestivum . Journal of Genetics and Breeding 46: 187192.
Lukow, OM, Payne, PI and Tkachuk, R (1989) The HMW glutenin subunit composition of Canadian wheat cultivars and their association with bread-making quality. Journal of the Science of Food and Agriculture 46: 451460.
Marchylo, BA, Lukow, OM and Kruger, JE (1992) Quantitative variation in high molecular weight glutenin subunit 7 in some Canadian wheats. Journal of Cereal Science 15: 2937.
Pagnotta, MA, Nevo, E, Beiles, A and Porceddu, E (1995) Wheat storage proteins: glutenin diversity in wild emmer, Triticum dicoccoides, in Israel and Turkey. 2. DNA diversity detected by PCR. Theoretical and Applied Genetics 91: 409414.
Payne, PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on bread making quality. Annual Review in Plant Physiology 38: 141153.
Payne, PI and Lawrence, GJ (1983) Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1 and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Research Communications 11: 2935.
Payne, PI, Holt, LM, Krattiger, AF and Carrillo, JM (1988) Relationships between seed quality characteristics and HMW glutenin subunit composition determined using wheats grown in Spain. Journal of Cereal Science 7: 229235.
Petersen, G, Seberg, O, Yde, M and Berthelsen, K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Molecular and Phylogenetic Evolution 39: 7082.
Radovanovic, N, Cloutier, S, Brown, D, Humphreys, DG and Lukow, OM (2002) Genetic variance for gluten strength contributed by high molecular weight glutenin proteins. Cereal Chemistry 79: 843849.
Ragupathy, R, Naeem, HA, Reimer, E, Lukow, OM, Sapirstein, HD and Cloutier, S (2008) Evolutionary origin of the segmental duplication encompassing the wheat Glu-B1 encoding the overexpressed 1Bx7 (1Bx7OE) high molecular weight glutenin subunit. Theoretical and Applied Genetics 116: 283296.
Ren, Y, Liang, D, Zhang, P, He, Z, Chen, J, Fu, T and Xia, X (2009) Characterization of overexpressed Bx7 Gene (Bx7OE) in Chinese and CIMMYT wheats by STS markers. Acta Agronomica Sinica 35: 403411.
Shewry, PR, Halford, NG and Tatham, AS (1992) High molecular weight subunits of wheat glutenin. Journal of Cereal Science 15: 105120.
Vawser, MJ and Cornish, GB (2004) Overexpression of HMW glutenin subunit Glu-B1 7x in hexaploid wheat varieties (Triticum aestivum L.). Australian Journal of Agricultural Research 55: 577588.
Wang, S, Yu, Z, Cao, M, Shen, X, Li, N, Li, X, Ma, W, Weißgerber, H, Zeller, FJ, Hsam, SLK and Yan, Y (2013) Molecular mechanisms of HMW glutenin subunits from 1Sl genome positively affecting wheat breadmaking quality. PLoS One 8: e58947.
Wrigley, CW (1996) Giant proteins with flour power. Nature 381: 738739.
Yan, Y, Hsam, SLK, Yu, JZ, Jiang, Y and Zeller, FJ (2003a) Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate (SDS–PAGE), acid polyacrylamide gel (A-PAGE) and capillary electrophoresis. Euphytica 130: 377385.
Yan, Y, Hsam, SLK, Yu, JZ, Jiang, Y, Ohtsuka, I and Zeller, FJ (2003 b) HMW and LMW alleles among putative tetraploid and hexaploid European spelt wheat (Triticum spelta L.) progenitors. Theoretical and Applied Genetics 107: 13211330.
Yan, YM, Jiang, Y, An, XL, Pei, YH, Li, XH, Zhang, YZ, Wang, AL, He, Z, Xia, X, Bekes, F and Ma, W (2009) Cloning, expression and functional analysis of HMW glutenin subunit 1By8 gene from Italy pasta wheat (Triticum turgidum L. ssp. durum). Journal of Cereal Science 50: 398406.
Zhang, Y, Li, X, Wang, A, An, X, Zhang, Q, Pei, Y, Gao, L, Ma, W, Appels, R and Yan, Y (2008) Novel x-type HMW glutenin genes from Aegilops tauschii and their implications on the wheat origin and evolution mechanism of Glu-D1-1 proteins. Genetics 178: 2333.

Keywords

Type Description Title
PDF
Supplementary materials

Li et al. Supplementary Material
Figure

 PDF (1.3 MB)
1.3 MB

Characterization of HMW glutenin subunit Bx7OE and its distribution in common wheat and related species

  • Jie Li (a1), Caixia Han (a1), Shoumin Zhen (a1), Xiaohui Li (a1) and Yueming Yan (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed