Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T07:29:18.268Z Has data issue: false hasContentIssue false

Alteration in physio-chemical properties and gene expression pattern of snapmelon (Cucumis melo var. momordica) genotypes against drought stress

Published online by Cambridge University Press:  21 February 2024

Waquar Akhter Ansari
Affiliation:
ICAR-Indian Institute of Vegetable Research, Varanasi, UP, India
Ram Krishna
Affiliation:
ICAR-Indian Institute of Vegetable Research, Varanasi, UP, India
Punam Singh Yadav
Affiliation:
ICAR-Indian Institute of Vegetable Research, Varanasi, UP, India
Tribhuvan Chaubey
Affiliation:
ICAR-Indian Institute of Vegetable Research, Varanasi, UP, India
Tusar Kanti Behera
Affiliation:
ICAR-Indian Institute of Vegetable Research, Varanasi, UP, India
Kangila Venkataraman Bhat
Affiliation:
ICAR-National Bureau of Plant Genetic Resources (Pusa Campus), New Delhi, India
Sudhakar Pandey*
Affiliation:
ICAR-Indian Institute of Vegetable Research, Varanasi, UP, India
*
Corresponding author: Sudhakar Pandey; Email: sudhakariivr@gmail.com

Abstract

Lack of water at limiting levels results in drought stress, which may have an impact on the various stages of a crop's life cycle. Four different genotypes of snapmelon (Cucumis melo L. var. momordica) responded differently to 0, 7 and 21 d of simulated drought stress. Information was collected on a range of morpho-physiological, biochemical and molecular characteristics. Each genotype had longer roots, though BAM-VR-312 had the longest roots overall. As the severity of the drought grew, the net photosynthetic rate (Pn) and stomatal conductance (Gs) dropped. In BAM-VR-312, a smaller decline in relative water content (RWC) was recorded, despite the fact that drought stress caused a significant fall in RWC. BAM-VR-312 had smaller accumulations of electrolyte leakage, hydrogen peroxide, phenol and malondialdehyde, although proline content was greater. A decrease in photosynthetic pigments was noted, though BAM-VR-312 had the least reduction. Antioxidant enzyme activity increased in BAM-VR-312, as evidenced by records of ascorbate peroxidase, catalase, guaiacol peroxidase, glutathione reductase and superoxide dismutase. Similarly, expression level of their respective genes was recorded highest in BAM-VR-312. Overall, the study clearly identified distinct genotype based on morpho-physiological, biochemical and molecular properties under drought stress and revealed that the genotype BAM-VR-312 had more efficient drought tolerance mechanisms than the other genotypes under the drought stress condition.

Type
Research Article
Copyright
Copyright © Indian Institute of Vegetable Research, 2024. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansari, WA, Atri, N, Singh, B, Kumar, P and Pandey, S (2018) Morpho-physiological and biochemical responses of muskmelon genotypes to different degree of water deficit. Photosynthetica 56, 10191030.Google Scholar
Arteaga, S, Yabor, L, Díez, MJ, Prohens, J, Boscaiu, M and Vicente, O (2020) The use of proline in screening for tolerance to drought and salinity in common bean (Phaseolus vulgaris L.) genotypes. Agronomy 10, 817.Google Scholar
Bates, LS, Walden, RP and Teare, ID (1973) Rapid determination of free proline for water stress studies. Plant and Soil 39, 205207.CrossRefGoogle Scholar
Bhargava, R, Gurjar, K, Haldhar, SM, Singh, RS and Sharma, BD (2016) Impact of water stress on photosynthesis and secondary metabolites in snapmelon and muskmelon. Indian Journal of Arid Horticulture 11, 3035.Google Scholar
Dhillon, NP, Singh, J, Fergany, M, Monforte, AJ and Sureja, AK (2009) Phenotypic and molecular diversity among landraces of snapmelon (Cucumis melo var. momordica) adapted to the hot and humid tropics of eastern India. Plant Genetics Resources 7, 291300.Google Scholar
Dhillon, NP, Monforte, AJ, Pitrat, M, Pandey, S, Singh, PK, Reitsma, KR, Garcia-Mas, J, Sharma, A and McCreight, JD (2013) Melon landraces of India: contributions and importance. Plant Breeding Reviews 35, 85150.Google Scholar
Dhillon, NP, Singh, H, Pitrat, M, Monforte, AJ and McCreight, JD (2014) Snapmelon (Cucumis melo L. Momordica Group), an indigenous cucurbit from India with immense value for melonbreeding. XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes, Vol. 1102, pp. 99–108.Google Scholar
Fleury, D, Jefferies, S, Kuchel, H and Langridge, P (2010) Genetic and genomic tools to improve drought tolerance in wheat. Journal of Experimental Botany 61, 32113222.Google Scholar
Goyal, M and Sharma, SK (2009) Traditional wisdom and value addition prospects of arid foods of desert regions of North West India. Indian Journal of Traditional Knowledge 8, 581585.Google Scholar
Heath, RL and Packer, L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125, 189198.Google Scholar
Jana, S and Choudhury, MA (1981) Glycolate metabolism of three submerged aquatic angiosperm during aging. Aquatic Botany 12, 345354.Google Scholar
Kang, J, Peng, Y and Xu, W (2022) Crop root responses to drought stress: molecular mechanisms, nutrient regulations, and interactions with microorganisms in the rhizosphere. International Journal of Molecular Sciences 23, 9310.CrossRefGoogle ScholarPubMed
Khare, N, Goyary, D, Singh, NK, Shah, P, Rathore, M, Anandhan, S, Sharma, D, Arif, M and Ahmed, Z (2010) Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell, Tissue and Organ Culture 103, 267277.CrossRefGoogle Scholar
Khodabakhshi, L, Seyedi, A, Mazaheri-Tirani, M and Motlagh, BP (2023) Morphological and physiological responses of Indigofera tinctoria L. to putrescine under drought stress. Russian Journal of Plant Physiology 70, 43.CrossRefGoogle Scholar
Khokhar, S and Magnusdottir, SGM (2002) Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. Journal of Agricultural and Food Chemistry 50, 565570.CrossRefGoogle ScholarPubMed
Lichtenthaler, HK and Buschmann, C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. In Wrolstad RE, Acree TE, An H, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF and Sporns P (eds), Current Protocols in Food Analytical Chemistry. New York: John Wiley & Sons, pp. F4.3.1F4.3.8.Google Scholar
Lima, JDS, Andrade, OVS, Santos, LCD, Morais, EGD, Martins, GS, Mutz, YS, Nascimento, VL, Marchiori, PER, Lopes, G and Guilherme, LRG (2023) Soybean plants exposed to low concentrations of potassium iodide have better tolerance to water deficit through the antioxidant enzymatic system and photosynthesis modulation. Plants 12, 2555.Google Scholar
Livak, KJ and Schmittgen, TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2-ΔΔCt method. Methods 25, 402408.Google Scholar
Mahlooji, M and Jenab, M (2021) Effect of water deficit stress and foliar application of maternal plant on germination characteristics of three barley (Hordeum vulgare) cultivars. Iranian Journal of Seed Research 8, 137150.Google Scholar
Mishra, N, Jiang, C, Chen, L, Paul, A, Chatterjee, A and Shen, G (2023) Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms. Frontiers in Plant Science 14, 1110622.CrossRefGoogle ScholarPubMed
Nakano, Y and Asada, K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxides in spinach chloroplast. Plant Cell Physiology 22, 867880.Google Scholar
Penella, C, Nebauer, SG, San Bautista, A, López-Galarza, S and Calatayud, Á (2014) Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: physiological responses. Journal of Plant Physiology 171, 842851.Google Scholar
Rai, AC, Singh, M and Shah, K (2012) Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants. Plant Physiology and Biochemistry 61, 108114.Google Scholar
Rai, GK, Rai, NP, Rathaur, S, Kumar, S and Singh, M (2013) Expression of rd29A::AtDREB1A/CBF3 in tomato alleviates drought-induced oxidative stress by regulating key enzymatic and non-enzymatic antioxidants. Plant Physiology and Biochemistry 69, 90100.Google Scholar
Rehman, A, Weng, J, Li, P, Yu, J, Rahman, SU, Khalid, M, Shah, IH, Gulzar, S, Chang, L and Niu, Q (2023) Differential response of two contrasting melon (Cucumis melo l.) genotypes to drought stress. Journal of Plant Biology 66, 519534.Google Scholar
Sanchez, RE, Rubio-Wilhelmi, MM, Cervilla, LM, Blasco, B, Rios, JJ, Rosales, MA, Romero, L and Ruiz, JM (2010) Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science 178, 3040.CrossRefGoogle Scholar
Shah, K, Kumar, RG, Verma, S and Dubey, RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science 161, 11351144.CrossRefGoogle Scholar
Tiwari, PN, Tiwari, S, Sapre, S, Tripathi, N, Payasi, DK, Singh, M, Thakur, S, Sharma, M, Tiwari, S and Tripathi, MK (2023) Prioritization of physio-biochemical selection indices and yield-attributing traits toward the acquisition of drought tolerance in chickpea (Cicer arietinum L.). Plants 12, 3175.Google Scholar
Supplementary material: File

Ansari et al. supplementary material

Ansari et al. supplementary material
Download Ansari et al. supplementary material(File)
File 11.4 KB