Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T01:49:56.496Z Has data issue: false hasContentIssue false

Confidence in Probabilistic Risk Assessment

Published online by Cambridge University Press:  15 November 2023

Luca Zanetti*
Affiliation:
Department of Humanities and Life Sciences (SUV), Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy

Abstract

Epistemic uncertainties are included in probabilistic risk assessment (PRA) as second-order probabilities that represent the degrees of belief of the scientists that a model is correct. In this article, I propose an alternative approach that incorporates the scientist’s confidence in a probability set for a given quantity. First, I give some arguments against the use of precise probabilities to estimate scientific uncertainty in risk analysis. I then extend the “confidence approach” developed by Brian Hill and Richard Bradley to PRA. Finally, I claim that this approach represents model uncertainty better than the standard (Bayesian) model does.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of the Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamson, N., and Bommer, J.. 2005. “Probability and Uncertainty in Seismic Hazard Analysis.” Earthquake Spectra 21 (2):603–7. https://doi.org/10.1193/1.1899158.CrossRefGoogle Scholar
Aven, T., and Renn, O.. 2015. “An Evaluation of the Treatment of Risk and Uncertainties in the IPCC Reports on Climate Change.” Risk Analysis 35 (4):701–12. https://doi.org/10.1111/risa.12298.CrossRefGoogle ScholarPubMed
Baker, J., Bradley, B., and Stafford, P.. 2021. Seismic Hazard and Risk Analysis. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108425056.CrossRefGoogle Scholar
Bommer, J. J. 2012. “Challenges of Building Logic Trees for Probabilistic Seismic Hazard Analysis.” Earthquake Spectra 28 (4):1723–35. https://doi.org/10.1193/1.4000079.CrossRefGoogle Scholar
Bommer, J. J., and Scherbaum, F.. 2008. “The Use and Misuse of Logic Trees in Probabilistic Seismic Hazard Analysis.” Earthquake Spectra 4 (24):9971009. https://doi.org/10.1193/1.2977755.CrossRefGoogle Scholar
Bradley, R. 2017. Decision Theory with a Human Face. Cambridge: Cambridge University Press. https://doi.org/10.1017/9780511760105.CrossRefGoogle Scholar
Bradley, R., Helgeson, C., and Hill, B.. 2017. “Climate Change Assessments: Confidence, Probability and Decision.” Philosophy of Science 84 (3):500522. https://doi.org/10.1086/692145.CrossRefGoogle Scholar
Budnitz, R., Apostolakis, G., Boore, D., Cluff, L., Coppersmith, K., Cornell, C., and Morris, P.. 1998. “Use of Technical Expert Panels: Applications to Probabilistic Seismic Hazard Analysis.” Risk Analysis 18 (4):463–69. https://doi.org/10.1111/j.1539-6924.1998.tb00361.x.CrossRefGoogle Scholar
Helgeson, C., Bradley, R., and Hill, B.. 2018. “Combining Probability with Qualitative Degree-of-Certainty Metrics in Assessment.” Climatic Change 149:517–25. https://doi.org/10.1007/s10584-018-2247-6.CrossRefGoogle Scholar
Hill, B. 2013. “Confidence and Decision.” Games and Economic Behavior 82:675–92. https://doi.org/10.1016/j.geb.2013.09.009.CrossRefGoogle Scholar
Hill, B. 2019. “Confidence in Beliefs and Rational Decision Making.” Economics and Philosophy 35 (2):223–58. https://doi.org/10.1017/S0266267118000214.CrossRefGoogle Scholar
Hill, B. Forthcoming. “Confidence, Consensus and Aggregation.” HEC Paris Research Paper. https://ssrn.com/abstract=4387641.Google Scholar
Janzwood, S. 2020. “Confident, Likely, or Both? The Implementation of the Uncertainty Language Framework in IPCC Special Reports.” Climatic Change 162:1655–75. https://doi.org/10.1007/s10584-020-02746-x.CrossRefGoogle Scholar
Kammerer, Annie M., and Ake, Jon P.. 2010. Implementation Guidance for SSHAC Level 3 and 4 Processes. Report NUREG-2117. Washington, DC: US Nuclear Regulatory Commission. https://www.nrc.gov/docs/ML1207/ML12073A311.pdf.Google Scholar
Klügel, J. 2011. “Uncertainty Analysis and Expert Judgement in Seismic Hazard Analysis.” Pure and Applied Geophysics 168:2753. https://doi.org/10.1007/s00024-010-0155-4.CrossRefGoogle Scholar
Kulkarni, R. B., Youngs, R. R., and Coppersmith, K. J.. 1984. “Assessment of Confidence Intervals for Results of Seismic Hazard Analysis.” Proceedings, Eighth World Conference on Earthquake Engineering 1:263–70.Google Scholar
Lanzano, G., Luzi, L., D’Amico, V., Pacor, F., Meletti, C., Marzocchi, M., Rotondi, R., and Varini, E.. 2020. “Ground Motion Models for the New Seismic Hazard Model of Italy (MPS19): Selection for Active Shallow Crustal Regions and Subduction Zones.” Bulletin of Earthquake Engineering 18:3487–516. https://doi.org/10.1007/s10518-020-00850-y.CrossRefGoogle Scholar
Marzocchi, W., and Jordan, T.. 2017. “A Unified Probabilistic Framework for Seismic Hazard Analysis.” Bulletin of the Seismological Society of America 107 (6):2738–44. https://doi.org/10.1785/0120170008.CrossRefGoogle Scholar
Mastrandrea, M., Mach, K., Plattner, G., Edenhofer, O., Stocker, T., Field, C., Ebi, K., and Matschoss, P.. 2011. “The IPCC AR5 Guidance Note on Consistent Treatment of Uncertainties: A Common Approach across the Working Groups.” Climatic Change 108: Article 675. https://doi.org/10.1007/s10584-011-0178-6.CrossRefGoogle Scholar
McGuire, R., Cornell, C. A., and Toro, G.. 2005. “The Case for Using Mean Seismic Hazard.” Earthquake Spectra 21 (3):879–86. https://doi.org/10.1193/1.1985447.CrossRefGoogle Scholar
Meletti, C., Marzocchi, W., D’Amico, V., Lanzano, G., Luzi, L., Martinelli, F., Pace, B., Rovida, A., Taroni, M., Visini, F., and the MPS19 Working Group. 2021. “The New Italian Seismic Hazard Model (MPS19).” Annals of Geophysics 64 (1). https://doi.org/10.4401/ag-8579.CrossRefGoogle Scholar
Musson, R. 2005. “Against Fractiles.” Earthquake Spectra 21 (3):887–91. https://doi.org/10.1193/1.1985445.CrossRefGoogle Scholar
Musson, R. 2012. “On the Nature of Logic Trees in Probabilistic Seismic Hazard Assessment.” Earthquake Spectra 28 (3):1291–96. https://doi.org/10.1193/1.4000062.CrossRefGoogle Scholar
O’Hagan, A., Buck, C., Daneshkhah, A., Eiser, R., Garthwaite, P., Jenkinson, D., Oakley, J., and Rakow, T.. 2006. Uncertain Judgements: Eliciting Experts’ Probabilities. London: John Wiley.CrossRefGoogle Scholar
Reisinger, A., Garschagen, M., Mach, K., Pathak, M., Poloczanska, E., van Aalst, M., Ruane, A. et al. 2020. “The Concept of Risk in the IPCC Sixth Assessment Report: A Summary of Cross-Working Group Discussions: Guidance for IPCC Authors.” https://www.ipcc.ch/event/guidance-note-concept-of-risk-in-the-6ar-cross-wg-discussions/.Google Scholar
Roussos, J. 2020. “Policymaking under Scientific Uncertainty.” PhD thesis, London School of Economics and Political Science. http://etheses.lse.ac.uk/4158/.Google Scholar
Roussos, J., Bradley, R., and Frigg, R.. 2021. “Making Confident Decisions with Model Ensembles.” Philosophy of Science 88 (3):439–60. https://doi.org/10.1086/712818.CrossRefGoogle Scholar
Scherbaum, F., and Kuehn, N. M.. 2011. “Logic Tree Branch Weights and Probabilities: Summing Up to One Is Not Enough.” Earthquake Spectra 27 (4):1237–51. https://doi.org/10.1193/1.3652744.CrossRefGoogle Scholar
Secanell, R., Martin, C., Viallet, E., and Senfaute, G.. 2018. “A Bayesian Methodology to Update the Probabilistic Seismic Hazard Assessment.” Bulletin of Earthquake Engineering 16:2513–27. https://doi.org/10.1007/s10518-017-0137-3.CrossRefGoogle Scholar
Selva, J., and Sandri, L.. 2013. “Probabilistic Seismic Hazard Assessment: Combining Cornell-like Approaches and Data at Sites through Bayesian Inference.” Bulletin of the Seismological Society of America 103 (3):1709–22. https://doi.org/10.1785/0120120091.CrossRefGoogle Scholar
Senior Seismic Hazard Analysis Committee. 1997. Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. Report NUREG-CR-6372. Washington, DC: US Nuclear Regulatory Commission. https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6372/vol1/index.html.Google Scholar
Wüthrich, N. 2016. “Conceptualizing Uncertainty: An Assessment of the Uncertainty Framework of the Intergovernmental Panel on Climate Change.” In Recent Developments in the Philosophy of Science: EPSA15, edited by Massimi, M., Romeijn, J., and Schurz, G., 95107. Dusseldorf, Germany: Springer. https://doi.org/10.1007/978-3-319-53730-6_9.Google Scholar