Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T10:22:54.800Z Has data issue: false hasContentIssue false

Trypanosoma cruzi nucleoside diphosphate kinase 1 (TcNDPK1) has a broad nuclease activity

Published online by Cambridge University Press:  04 November 2008

M. R. MIRANDA
Affiliation:
Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires and CONICET, Combatientes de Malvinas 3150, (1427) Buenos Aires, Argentina
G. E. CANEPA
Affiliation:
Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires and CONICET, Combatientes de Malvinas 3150, (1427) Buenos Aires, Argentina
L. A. BOUVIER
Affiliation:
Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires and CONICET, Combatientes de Malvinas 3150, (1427) Buenos Aires, Argentina
C. A. PEREIRA*
Affiliation:
Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires and CONICET, Combatientes de Malvinas 3150, (1427) Buenos Aires, Argentina
*
*Corresponding author: IDIM, Combatientes de Malvinas 3150, (1427) Bs. As., Argentina. Tel: +5411 4514 8701. Fax: +5411 4523 894. E-mail: cpereira@mail.retina.ar

Summary

Here, we present the characterization of a trypanosomatid nucleoside diphosphate kinase (TcNDPK1) exhibiting nuclease activity. This is the first identification of a NDPK with this property in trypanosomatid organisms. The recombinant TcNDPK1 protein cleaves not only linear DNA, but also supercoiled plasmid DNA. Additionally, TcNDPK1 is capable of degrading Trypanosoma cruzi genomic DNA. ATP or ADP did not affect the nuclease activity, while the absence of Mg2+ completely inhibits this activity. NDPK and nuclease activities were inhibited at the same temperature, suggesting the presence of related catalytic sites. Furthermore, phenogram analysis showed that TcNDPK1 is close to Drosophila melanogaster and human NDPKs. The unspecific nuclease activity could suggest a participation in cellular processes such as programmed cell death.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Backer, J. M., Mendola, C. E., Kovesdi, I., Fairhurst, J. L., O'Hara, B., Eddy, R. L. Jr., Shows, T. B., Mathew, S., Murty, V. V. and Chaganti, R. S. (1993). Chromosomal localization and nucleoside diphosphate kinase activity of human metastasis-suppressor genes NM23-1 and NM23-2. Oncogene 8, 497502.Google Scholar
Barrett, M. P., Burchmore, R. J., Stich, A., Lazzari, J. O., Frasch, A. C., Cazzulo, J. J. and Krishna, S. (2003). The trypanosomiases. Lancet 362, 14691480.CrossRefGoogle ScholarPubMed
Debrabant, A. and Nakhasi, H. (2003). Programmed cell death in trypanosomatids: is it an altruistic mechanism for survival of the fittest? Kinetoplastid Biology and Disease 2, 17.Google Scholar
Hammargren, J., Salinas, T., Maréchal-Drouard, L. and Knorpp, C. (2007). The pea mitochondrial nucleoside diphosphate kinase cleaves DNA and RNA. FEBS Letters 581, 35073511.Google Scholar
Higgins, D. G. and Sharp, P. M. (1988). CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73, 237244.CrossRefGoogle ScholarPubMed
Kumar, P., Verma, A., Saini, A. K., Chopra, P., Chakraborti, P. K., Singh, Y. and Chowdhury, S. (2005). Nucleoside diphosphate kinase from Mycobacterium tuberculosis cleaves single strand DNA within the human c-myc promoter in an enzyme-catalyzed reaction. Nucleic Acids Research 33, 27072714.CrossRefGoogle Scholar
Lacombe, M. L., Milon, L., Munier, A., Mehus, J. G. and Lambeth, D. O. (2000). The human Nm23/nucleoside diphosphate kinases. Journal of Bioenergetics and Biomembranes 32, 247258.Google Scholar
Levit, M. N., Abramczyk, B. M., Stock, J. B. and Postel, E. H. (2002). Interactions between Escherichia coli nucleoside-diphosphate kinase and DNA. Journal of Biological Chemistry 277, 51635167.CrossRefGoogle ScholarPubMed
Miranda, M. R., Canepa, G. E., Bouvier, L. A. and Pereira, C. A. (2008). Trypanosoma cruzi: Multiple nucleoside diphosphate kinase isoforms in a single cell. Experimental Parasitology 120, 103107.CrossRefGoogle Scholar
Page, R. D. (1996). TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357358.Google ScholarPubMed
Parks, R. E. Jr., and Agarwal, R. P. (1973). Nucleoside diphosphokinases, In The Enzymes (ed. Boyer, P. D.), pp. 307334. Academic Press, New York, USA.Google Scholar
Postel, E. H., Abramczyk, B. M., Levit, M. N. and Kyin, S. (2000). Catalysis of DNA cleavage and nucleoside triphosphate synthesis by NM23-H2/NDP kinase share an active site that implies a DNA repair function. Proceedings of the National Academy of Sciences, USA 97, 1419414199.Google Scholar
Saini, A. K., Maithal, K., Chand, P., Chowdhury, S., Vohra, R., Goyal, A., Dubey, G. P., Chopra, P., Chandra, R., Tyagi, A. K., Singh, Y. and Tandon, V. (2004). Nuclear localization and in situ DNA damage by Mycobacterium tuberculosis nucleoside-diphosphate kinase. Journal of Biological Chemistry 29, 5014250149.CrossRefGoogle Scholar
Srivastava, S., Li, Z., Ko, K., Choudhury, P., Albaqumi, M., Johnson, A. K., Yan, Y., Backer, J. M., Unutmaz, D., Coetzee, W. A. and Skolnik, E. Y. (2006). Histidine phosphorylation of the potassium channel KCa3.1 by nucleoside diphosphate kinase B is required for activation of KCa3.1 and CD4 T cells. Molecular Cell 24, 665675.CrossRefGoogle ScholarPubMed
Tielens, A. G. and Van Hellemond, J. J. (1998). Differences in energy metabolism between trypanosomatidae. Parasitology Today 14, 265272.Google Scholar