Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-21T12:29:41.990Z Has data issue: false hasContentIssue false

TGF-β receptor type II costameric localization in cardiomyocytes and host cell TGF-β response is disrupted by Trypanosoma cruzi infection

Published online by Cambridge University Press:  21 March 2016

CLAUDIA MAGALHÃES CALVET*
Affiliation:
Laboratório de Ultraestrutura Celular, Fundação Oswaldo Cruz, Av. Brasil 4365, Pav. Carlos Chagas 3° andar, Rio de Janeiro, Brazil
TATIANA ARAÚJO SILVA
Affiliation:
Laboratório de Ultraestrutura Celular, Fundação Oswaldo Cruz, Av. Brasil 4365, Pav. Carlos Chagas 3° andar, Rio de Janeiro, Brazil
TATIANA GALVÃO DE MELO
Affiliation:
Laboratório de Ultraestrutura Celular, Fundação Oswaldo Cruz, Av. Brasil 4365, Pav. Carlos Chagas 3° andar, Rio de Janeiro, Brazil
TÂNIA CREMONINI DE ARAÚJO-JORGE
Affiliation:
Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
MIRIAN CLAUDIA DE SOUZA PEREIRA
Affiliation:
Laboratório de Ultraestrutura Celular, Fundação Oswaldo Cruz, Av. Brasil 4365, Pav. Carlos Chagas 3° andar, Rio de Janeiro, Brazil
*
*Corresponding author: Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos 21040-360 Rio de Janeiro, RJ, Brazil. Phone: +5521 25621027. E-mail: cmcalvet@ioc.fiocruz.br

Summary

Transforming growth factor beta (TGF-β) cytokine is involved in Chagas disease establishment and progression. Since Trypanosoma cruzi can modulate host cell receptors, we analysed the TGF-β receptor type II (TβRII) expression and distribution during T. cruzi – cardiomyocyte interaction. TβRII immunofluorescent staining revealed a striated organization in cardiomyocytes, which was co-localized with vinculin costameres and enhanced (38%) after TGF-β treatment. Cytochalasin D induced a decrease of 45·3% in the ratio of cardiomyocytes presenting TβRII striations, demonstrating an association of TβRII with the cytoskeleton. Western blot analysis showed that cytochalasin D significantly inhibited Smad 2 phosphorylation and fibronectin stimulation after TGF-β treatment in cardiomyocytes. Trypanosoma cruzi infection elicited a decrease of 79·8% in the frequency of cardiomyocytes presenting TβRII striations, but did not interfere significantly in its expression. In addition, T. cruzi-infected cardiomyocytes present a lower response to exogenous TGF-β, showing no enhancement of TβRII striations and a reduction of phosphorylated Smad 2, with no significant difference in TβRII expression when compared to uninfected cells. Together, these results suggest that the co-localization of TβRII with costameres is important in activating the TGF-β signalling cascade, and that T. cruzi-derived cytoskeleton disorganization could result in altered or low TGF-β response in infected cardiomyocytes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adesse, D., Lisanti, M. P., Spray, D. C., Machado, F. S., Meirelles, M. D. N., Tanowitz, H. B. and Garzoni, L. R. (2010). Trypanosoma cruzi infection results in the reduced expression of caveolin-3 in the heart. Cell cycle (Georgetown, Tex.) 9, 16391646.CrossRefGoogle ScholarPubMed
Albareda, M. C., Perez-Mazliah, D., Natale, M. A., Castro-Eiro, M., Alvarez, M. G., Viotti, R., Bertocchi, G., Lococo, B., Tarleton, R. L. and Laucella, S. A. (2015). Perturbed T cell IL-7 receptor signaling in chronic Chagas disease. Journal of Immunology (Baltimore, Md.: 1950) 194, 38833889.CrossRefGoogle ScholarPubMed
Alcaide, P. and Fresno, M. (2004). AgC10, a mucin from Trypanosoma cruzi, destabilizes TNF and cyclooxygenase-2 mRNA by inhibiting mitogen-activated protein kinase p38. European Journal of Immunology 34, 16951704.CrossRefGoogle ScholarPubMed
Andrade, D. V., Gollob, K. J. and Dutra, W. O. (2014). Acute Chagas disease: new global challenges for an old neglected disease. PLoS Neglected Tropical Diseases 8, e3010.CrossRefGoogle ScholarPubMed
Araújo-Jorge, T. C., Waghabi, M. C., Bailly, S. and Feige, J.-J. (2012). The TGF-β pathway as an emerging target for Chagas disease therapy. Clinical Pharmacol.ogy and Therapeutics 92, 613621.CrossRefGoogle ScholarPubMed
Araújo-Jorge, T. C., Waghabi, M. C., Hasslocher-Moreno, A. M., Xavier, S. S., Higuchi, M. D. L., Keramidas, M., Bailly, S. and Feige, J.-J. (2002). Implication of transforming growth factor-beta1 in Chagas disease myocardiopathy. J.ournal of Infectious Diseases 186, 1823–e3018.CrossRefGoogle ScholarPubMed
Araújo-Jorge, T. C., Waghabi, M. C., Soeiro, M. D. N. C., Keramidas, M., Bailly, S. and Feige, J.-J. (2008). Pivotal role for TGF-beta in infectious heart disease: the case of Trypanosoma cruzi infection and consequent chagasic myocardiopathy. Cytokine & Growth Factor Rev.iews 19, 405413.Google Scholar
Assinder, S. and Cole, N. (2011). Does TGF-β induced formation of actin stress fibres reinforce Smad dependent TGF-β signalling in the prostate? Med.ical Hypotheses 76, 802804.CrossRefGoogle ScholarPubMed
Biernacka, A., Dobaczewski, M. and Frangogiannis, N. G. (2011). TGF-β signaling in fibrosis. Growth Factors (Chur, Switzerland) 29, 196202.CrossRefGoogle ScholarPubMed
Bocchi, E. A., Arias, A., Verdejo, H., Diez, M., Gómez, E. and Castro, P. (2013). The reality of heart failure in Latin America. Journal of the American College of Cardiology 62, 949958.CrossRefGoogle ScholarPubMed
Calvet, C. M., Meuser, M., Almeida, D., Meirelles, M. N. L. and Pereira, M. C. S. (2004). Trypanosoma cruzi-cardiomyocyte interaction: role of fibronectin in the recognition process and extracellular matrix expression in vitro and in vivo . Experimental Parasitology 107, 2030.CrossRefGoogle ScholarPubMed
Calvet, C. M., Oliveira, F. O. R., Araújo-Jorge, T. C. and Pereira, M. C. S. (2009). Regulation of extracellular matrix expression and distribution in Trypanosoma cruzi-infected cardiomyocytes. International Journal of Medical Microbiol.: IJMM 299, 301312.CrossRefGoogle ScholarPubMed
Chen, L., Klass, C. and Woods, A. (2004). Syndecan-2 regulates transforming growth factor-beta signaling. Journal of Biological Chemistry 279, 1571515718.CrossRefGoogle ScholarPubMed
Coura, J. R. and Borges-Pereira, J. (2012). Chagas disease. What is known and what should be improved: a systemic review. Revista da Sociedade Brasileira de Medicina Tropical 45, 286296.CrossRefGoogle ScholarPubMed
Craig, S. W. and Pardo, J. V. (1983). Gamma actin, spectrin, and intermediate filament proteins colocalize with vinculin at costameres, myofibril-to-sarcolemma attachment sites. Cell Motility 3, 449462.CrossRefGoogle ScholarPubMed
De Oliveira, F. L., Araújo-Jorge, T. C., de Souza, E. M., de Oliveira, G. M., Degrave, W. M., Feige, J.-J., Bailly, S. and Waghabi, M. C. (2012). Oral administration of GW788388, an inhibitor of transforming growth factor beta signaling, prevents heart fibrosis in Chagas disease. PLoS Neglected Tropical Diseases 6, e1696.CrossRefGoogle ScholarPubMed
De Souza, S. M., Vieira, P. M. D. A., Roatt, B. M., Reis, L. E. S., da Silva Fonseca, K., Nogueira, N. C., Reis, A. B., Tafuri, W. L. and Carneiro, C. M. (2014). Dogs infected with the blood trypomastigote form of Trypanosoma cruzi display an increase expression of cytokines and chemokines plus an intense cardiac parasitism during acute infection. Molecular Immunology 58, 92–e1697.CrossRefGoogle ScholarPubMed
Edlund, S., Landström, M., Heldin, C.-H. and Aspenstro, P. (2002). Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Molecular Biology of the Cell 13, 902914.CrossRefGoogle ScholarPubMed
Eghbali, M., Tomek, R., Woods, C. and Bhambi, B. (1991). Cardiac fibroblasts are predisposed to convert into myocyte phenotype: specific effect of transforming growth factor beta. Proceedings of the National Academy of Sciences of the United States of America 88, 795799.CrossRefGoogle ScholarPubMed
Ferrão, P. M., de Oliveira, F. L., Degrave, W. M., Araujo-Jorge, T. C., Mendonça-Lima, L. and Waghabi, M. C. (2012). A phosphoproteomic approach towards the understanding of the role of TGF-β in Trypanosoma cruzi biology. PLoS ONE 7, e38736.CrossRefGoogle ScholarPubMed
Ferrão, P. M., d'Avila-Levy, C. M., Araujo-Jorge, T. C., Degrave, W. M., Gonçalves, A. D. S., Garzoni, L. R., Lima, A. P., Feige, J. J., Bailly, S., Mendonça-Lima, L. and Waghabi, M. C. (2015). Cruzipain activates latent TGF-β from host cells during T. cruzi Invasion. PLoS ONE 10, e0124832.CrossRefGoogle ScholarPubMed
Galliher, A. J. and Schiemann, W. P. (2007). Src phosphorylates Tyr284 in TGF-beta type II receptor and regulates TGF-beta stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Research 67, 3752–8.CrossRefGoogle ScholarPubMed
Hall, B. S. and Pereira, M. A. (2000). Dual role for transforming growth factor beta-dependent signaling in Trypanosoma cruzi infection of mammalian cells. Infection and Immunity 68, 20772081.CrossRefGoogle ScholarPubMed
Hayashida, T. (2010). Integrins modulate cellular fibrogenesis at multiple levels: regulation of TGF-beta signaling. Endocrine Metabolic & Immune Disorders – Drug Targets 10, 302319.CrossRefGoogle ScholarPubMed
He, K., Fu, Y., Zhang, W., Yuan, J., Li, Z., Lv, Z., Zhang, Y. and Fang, X. (2011). Single-molecule imaging revealed enhanced dimerization of transforming growth factor β type II receptors in hypertrophic cardiomyocytes. Biochem.ical and Biophys.ical Res. Commun. 407, 313317.CrossRefGoogle ScholarPubMed
Hubchak, S. C. (2003). Cytoskeletal rearrangement and signal transduction in TGF-beta-1-stimulated mesangial cell collagen accumulation. J. Am. Soc. Nephrol. 14, 19691980.CrossRefGoogle Scholar
Jaka, O., Casas-Fraile, L., López de Munain, A. and Sáenz, A. (2015). Costamere proteins and their involvement in myopathic processes. Expert Reviews in Molecular Medicine 17, e12.CrossRefGoogle ScholarPubMed
Kong, P., Christia, P. and Frangogiannis, N. G. (2014). The pathogenesis of cardiac fibrosis. Cellular and Molecular Life Sciences: CMLS 71, 549–e174.CrossRefGoogle ScholarPubMed
Koteliansky, V. E., Glukhova, M. A., Gneushev, G. N., Samuel, J. L. and Rappaport, L. (1986). Isolation and localization of filamin in heart muscle. European Journal of Biochemistry/FEBS 156, 619623.CrossRefGoogle ScholarPubMed
Leask, A. (2007). TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovascular Research 74, 207212.CrossRefGoogle ScholarPubMed
Li, M., Georgakopoulos, D., Lu, G., Hester, L., Kass, D. A., Hasday, J. and Wang, Y. (2005). p38 MAP kinase mediates inflammatory cytokine induction in cardiomyocytes and extracellular matrix remodeling in heart. Circulation 111, 24942502.CrossRefGoogle ScholarPubMed
Lim, J. A., Baek, H. J., Jang, M. S., Choi, E. K., Lee, Y. M., Lee, S. J., Lim, S. C., Kim, J. Y., Kim, T. H., Kim, H. S., Mishra, L. and Kim, S. S. (2014). Loss of β2-spectrin prevents cardiomyocyte differentiation and heart development. Cardiovascular Research 101, 3947.CrossRefGoogle ScholarPubMed
Magdesian, M. H., Tonelli, R. R., Fessel, M. R., Silveira, M. S., Schumacher, R. I., Linden, R., Colli, W. and Alves, M. J. M. (2007). A conserved domain of the gp85/trans-sialidase family activates host cell extracellular signal-regulated kinase and facilitates Trypanosoma cruzi infection. Experimental Cell Research 313, 210218.CrossRefGoogle ScholarPubMed
Majumder, S. and Kierszenbaum, F. (1996). Mechanisms of Trypanosoma cruzi-induced down-regulation of lymphocyte function. Inhibition of transcription and expression of IL-2 receptor gamma (p64IL-2R) and beta (p70IL-2R) chain molecules in activated normal human lymphocytes. Journal of Immunology (Baltimore, Md.: 1950) 156, 38663874.CrossRefGoogle ScholarPubMed
Malik, L. H., Singh, G. D. and Amsterdam, E. A. (2015). The epidemiology, clinical manifestations, and management of Chagas heart disease. Clinical Cardiology 38, 565569.CrossRefGoogle ScholarPubMed
Massagué, J. and Xi, Q. (2012). TGF-β control of stem cell differentiation genes. FEBS Letters 586, 19531958.CrossRefGoogle ScholarPubMed
Meirelles, M. N. S. L., Souto-Padrón, T. and De Souza, W. (1984). Participation of cell surface anionic sites in the interaction between Trypanosoma cruzi and macrophages. Journal of Submicroscopic Cytology 16, 533545.Google ScholarPubMed
Meirelles, M. N. S. L., de Araújo-Jorge, T. C., Miranda, C. F., de Souza, W. and Barbosa, H. S. (1986). Interaction of Trypanosoma cruzi with heart muscle cells: ultrastructural and cytochemical analysis of endocytic vacuole formation and effect upon myogenesis in vitro . European Journal of Cell Biology 41, 198206.Google Scholar
Melo, T. G. de., Almeida, D., Meirelles, M. D. N. S. L. and Pereira, M. C. D. S. (2004). Trypanosoma cruzi infection disrupts vinculin costameres in cardiomyocytes. European Journal of Cell Biology 83, 531540.CrossRefGoogle ScholarPubMed
Melo, T. G., Almeida, D. S., Meirelles, M. N. S. L. and Pereira, M. C. S. (2006). Disarray of sarcomeric alpha-actinin in cardiomyocytes infected by Trypanosoma cruzi . Parasitology 133, 171–8.CrossRefGoogle ScholarPubMed
Ming, M., Ewen, M. E. and Pereira, M. E. (1995). Trypanosome invasion of mammalian cells requires activation of the TGF beta signaling pathway. Cell 82, 287296.CrossRefGoogle ScholarPubMed
Moustakas, A. and Heldin, C.-H. (2008). Dynamic control of TGF-beta signaling and its links to the cytoskeleton. FEBS Letters 582, 20512065.CrossRefGoogle ScholarPubMed
Mu, Y., Gudey, S. K. and Landström, M. (2012). Non-Smad signaling pathways. Cell and Tissue Research 347, 1120.CrossRefGoogle ScholarPubMed
Mukherjee, S., Huang, H., Petkova, S. B., Albanese, C., Pestell, R. G., Braunstein, V. L., Christ, G. J., Wittner, M., Lisanti, M. P., Berman, J. W., Weiss, L. M. and Tanowitz, H. B. (2004). Trypanosoma cruzi infection activates extracellular signal-regulated kinase in cultured endothelial and smooth muscle cells. Infection and Immunity 72, 52745282.CrossRefGoogle ScholarPubMed
Pereira, M. C. de S., Costa, M., Chagas Filho, C. and de Meirelles, M. D. N. S. L. (1993). Myofibrillar breakdown and cytoskeletal alterations in heart muscle cells during invasion by Trypanosoma cruzi: immunological and ultrastructural study. Journal of Submicroscopic Cytology and Pathology 25, 559569.Google ScholarPubMed
Razinia, Z., Mäkelä, T., Ylänne, J. and Calderwood, D. A. (2012). Filamins in mechanosensing and signaling. Annual Review of Biophysics 41, 227246.CrossRefGoogle ScholarPubMed
Rocha Rodrigues, D. B., dos Reis, M. A., Romano, A., Pereira, S. A. D. L., Teixeira, V. D. P. A., Tostes, S. and Rodrigues, V. (2012). In situ expression of regulatory cytokines by heart inflammatory cells in Chagas’ disease patients with heart failure. Clinical & Developmental Immunology 2012, 361730.Google Scholar
Samarel, A. M. (2005). Costameres, focal adhesions, and cardiomyocyte mechanotransduction. American Journal of Physiology Heart and Circulatory Physiology 289, H2291301.CrossRefGoogle ScholarPubMed
Sasaki, A., Masuda, Y., Ohta, Y., Ikeda, K. and Watanabe, K. (2001). Filamin associates with Smads and regulates transforming growth factor-beta signaling. Journal of Biological Chemistry 276, 17871361737.CrossRefGoogle ScholarPubMed
Singla, D. K., Kumar, D. and Sun, B. (2005). Transforming growth factor-beta2 enhances differentiation of cardiac myocytes from embryonic stem cells. Biochemical and Biophysical Research Communications 332, 135141.Google Scholar
Soeiro, M. de N., Paiva, M. M., Barbosa, H. S., Meirelles, M. de N. and Araújo-Jorge, T. C. (1999). A cardiomyocyte mannose receptor system is involved in Trypanosoma cruzi invasion and is down-modulated after infection. Cell Structure and Function 24, 139149.Google Scholar
Stempin, C. C., Garrido, V. V., Dulgerian, L. R. and Cerbán, F. M. (2008). Cruzipain and SP600125 induce p38 activation, alter NO/arginase balance and favor the survival of Trypanosoma cruzi in macrophages. Acta Tropica 106, 119127.Google Scholar
Stevenson, S. A., Cullen, M. J., Rothery, S., Coppen, S. R. and Severs, N. J. (2005). High-resolution en-face visualization of the cardiomyocyte plasma membrane reveals distinctive distributions of spectrin and dystrophin. European Journal of Cell Biology 84, 961971.Google Scholar
Tang, Y., Katuri, V., Dillner, A., Mishra, B., Deng, C.-X. and Mishra, L. (2003). Disruption of transforming growth factor-beta signaling in ELF beta-spectrin-deficient mice. Science (New York, NY) 299, 574577.CrossRefGoogle ScholarPubMed
Taniwaki, N. N., Machado, F. S., Massensini, A. R. and Mortara, R. A. (2006). Trypanosoma cruzi disrupts myofibrillar organization and intracellular calcium levels in mouse neonatal cardiomyocytes. Cell and Tissue Research 324, 489496.CrossRefGoogle ScholarPubMed
Tian, Y. C. and Phillips, A. O. (2002). Interaction between the transforming growth factor-beta type II receptor/Smad pathway and beta-catenin during transforming growth factor-beta1-mediated adherens junction disassembly. American Journal of Pathology 160, 16191628.CrossRefGoogle ScholarPubMed
Unnikrishnan, M. and Burleigh, B. A. (2004). Inhibition of host connective tissue growth factor expression: a novel Trypanosoma cruzi-mediated response. FASEB J.: Official Publication of the Federation of American Societies for Experimental Biology 18, 16251635.CrossRefGoogle ScholarPubMed
VanWinkle, W. B., Snuggs, M. B., De Hostos, E. L., Buja, L. M., Woods, A. and Couchman, J. R. (2002). Localization of the transmembrane proteoglycan syndecan-4 and its regulatory kinases in costameres of rat cardiomyocytes: a deconvolution microscopic study. Anatomical Record 268, 3846.Google Scholar
Vardouli, L., Moustakas, A. and Stournaras, C. (2005). LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-beta. Journal of Biological Chemistry 280, 1144811457.CrossRefGoogle ScholarPubMed
Waghabi, M. C., Coutinho, C. M., Soeiro, M. N., Pereira, M. C., Feige, J. J., Keramidas, M., Cosson, A., Minoprio, P., Van Leuven, F. and Araújo-Jorge, T. C. (2002). Increased Trypanosoma cruzi invasion and heart fibrosis associated with high transforming growth factor β levels in mice deficient in α2 -macroglobulin. Infection and Immunity 70, 51155123.CrossRefGoogle Scholar
Waghabi, M. C., Keramidas, M., Feige, J.-J., Araújo-Jorge, T. C. and Bailly, S. (2005 a). Activation of transforming growth factor β by Trypanosoma cruzi . Cellular Microbiology 7, 511517.CrossRefGoogle ScholarPubMed
Waghabi, M. C., Keramidas, M., Bailly, S., Degrave, W., Mendonça-Lima, L., Soeiro, M. D. N. C., Meirelles, M. D. N. L., Paciornik, S., Araújo-Jorge, T. C. and Feige, J. J. (2005 b). Uptake of host cell transforming growth factor-beta by Trypanosoma cruzi amastigotes in cardiomyocytes: potential role in parasite cycle completion. American Journal of Pathology 167, 9931003.CrossRefGoogle ScholarPubMed
Waghabi, M. C., Keramidas, M., Calvet, C. M., Meuser, M., de Nazaré, C., Soeiro, M., Mendonça-Lima, L., Araújo-Jorge, T. C., Feige, J.-J. and Bailly, S. (2007). SB-431542, a transforming growth factor beta inhibitor, impairs Trypanosoma cruzi infection in cardiomyocytes and parasite cycle completion. Antimicrobial Agents and Chemotherapy 51, 29052910.Google Scholar
Waghabi, M. C., de Souza, E. M., de Oliveira, G. M., Keramidas, M., Feige, J.-J., Araújo-Jorge, T. C. and Bailly, S. (2009). Pharmacological inhibition of transforming growth factor beta signaling decreases infection and prevents heart damage in acute Chagas’ disease. Antimicrobial Agents Chemotherapy 53, 46944701.CrossRefGoogle ScholarPubMed
Wang, S. E., Xiang, B., Zent, R., Quaranta, V., Pozzi, A. and Arteaga, C. L. (2009). Transforming growth factor beta induces clustering of HER2 and integrins by activating Src-focal adhesion kinase and receptor association to the cytoskeleton. Cancer Research 69, 475482.CrossRefGoogle ScholarPubMed
WHO (2012). Chagas disease – factsheet. Weekly Epidemiological Record 87, 519522.Google Scholar
Wu, J., Sung, H., Chung, T. and DePhilip, R. M. (2002). Role of N-Cadherin- and integrin-based costameres in the development of rat cardiomyocytes. Journal of Cellular Biochemistry 84, 717724.Google Scholar
Supplementary material: File

Calvet supplementary material

Calvet supplementary material 1

Download Calvet supplementary material(File)
File 5 MB