Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-11T21:29:19.074Z Has data issue: false hasContentIssue false

Temporal dynamics of spore release of the crayfish plague pathogen from its natural host, American spiny-cheek crayfish (Orconectes limosus), evaluated by transmission experiments

Published online by Cambridge University Press:  21 February 2013

J. SVOBODA
Affiliation:
Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, Prague 2, CZ-12844, Czech Republic
E. KOZUBÍKOVÁ-BALCAROVÁ
Affiliation:
Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, Prague 2, CZ-12844, Czech Republic
A. KOUBA
Affiliation:
South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany, CZ-38925, Czech Republic
M. BUŘIČ
Affiliation:
South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany, CZ-38925, Czech Republic
P. KOZÁK
Affiliation:
South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany, CZ-38925, Czech Republic
J. DIÉGUEZ-URIBEONDO
Affiliation:
Departamento de Micología, Real Jardín Botánico CSIC, Plaza Murillo 2, 28014 Madrid, Spain
A. PETRUSEK*
Affiliation:
Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, Prague 2, CZ-12844, Czech Republic
*
*Corresponding author: Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, Prague 2, CZ-12844, Czech Republic. Tel: +420 602 656 937. Fax: +420 221 951 673. E-mail: petrusek@cesnet.cz

Summary

The crayfish plague pathogen, Aphanomyces astaci, is one of the most serious threats to indigenous European crayfish species. The North American invasive spiny-cheek crayfish, Orconectes limosus, is an important source of this pathogen in central and western Europe. We evaluated potential changes in A. astaci spore release rate from infected individuals of this species by experiments investigating the pathogen transmission to susceptible noble crayfish, Astacus astacus. We filtered defined volumes of water regularly to quantify spore concentration, and sampled crayfish tissues at the end of the experiment. The filters and tissues were then tested for the presence of A. astaci DNA by species-specific quantitative PCR. Additionally, we tested the efficiency of horizontal transmission to apparently uninfected O. limosus. The experiments confirmed that A. astaci can be transmitted to susceptible crayfish during intermoult periods, and that the pathogen was more frequently detected in noble crayfish recipients than in American ones. The pathogen spore concentrations substantially varied in time, and significantly increased during moulting of infected hosts. Our study strengthens the evidence that although the likelihood of crayfish plague transmission by water transfer from localities with infected American crayfish might increase when these are moulting or dying, no time-periods can be proclaimed safe.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alderman, D. J. and Polglase, J. L. (1986). Aphanomyces astaci: isolation and culture. Journal of Fish Diseases 9, 367379. doi: 10.1111/j.1365-2761.1986.tb01030.x.CrossRefGoogle Scholar
Alderman, D. J., Polglase, J. L. and Frayling, M. (1987). Aphanomyces astaci pathogenicity under laboratory and field conditions. Journal of Fish Diseases 10, 385393. doi: 10.1111/j.1365-2761.1987.tb01086.x.CrossRefGoogle Scholar
Cefas – Centre for Environment, Fisheries and Aquaculture Science (2000). Summary Final Report: Effects of Exposure to High and Low Temperatures on the Survival of the Crayfish Plague Fungus A. astaci in Vitro and in Vivo. Australian Quarantine and Inspection Service, Canberra, Australia.Google Scholar
Cerenius, L., Söderhäll, K., Persson, M. and Ajaxon, R. (1988). The crayfish plague fungus Aphanomyces astaci – diagnosis, isolation, and pathobiology. Freshwater Crayfish 7, 131144.Google Scholar
Cerenius, L., Bangyeekhun, E., Keyser, P., Söderhäll, I. and Söderhäll, K. (2003). Host prophenoloxidase expression in freshwater crayfish is linked to increased resistance to the crayfish plague fungus Aphanomyces astaci. Cellular Microbiology 5, 353357. doi: 10.1046/j.1462-5822.2003.00282.x.CrossRefGoogle Scholar
Chucholl, C. (2012). Understanding invasion success: life-history traits and feeding habits of the alien crayfish Orconectes immunis (Decapoda, Astacida, Cambaridae). Knowledge and Management of Aquatic Ecosystems 404, 04. doi: 10.1051/kmae/2011082.CrossRefGoogle Scholar
Diéguez-Uribeondo, J. and Söderhäll, K. (1993). Procambarus clarkii Girard as a vector for the crayfish plague fungus, Aphanomyces astaci Schikora. Aquaculture and Fisheries Management 24, 761765. doi: 10.1111/j.1365-2109.1993.tb00655.x.Google Scholar
Diéguez-Uribeondo, J., Huang, T. S., Cerenius, L. and Söderhäll, K. (1995). Physiological adaptation of an Aphanomyces astaci strain isolated from the fresh water crayfish Procambarus clarkii. Mycological Research 99, 574578. doi: 10.1016/S0953-7562(09)80716-8.CrossRefGoogle Scholar
Füreder, L. (2006). Indigenous crayfish habitat and threats. In Atlas of Crayfish in Europe (ed. Souty-Grosset, C., Holdich, D. M., Noël, P. Y., Reynolds, J. D. and Haffner, P.), pp. 2547. Muséum National d'Histoire Naturelle, Paris, France.Google Scholar
Hobbs, H. H. J. (1974). Synopsis of the families and genera of crayfishes (Cruatacea: Decapoda). Smithsonian Contributions to Zoology 164, 132. doi: 10.5479/si.00810282.164.Google Scholar
Holdich, D. M., Haffner, P. and Noël, P. Y. (2006). Species files. In Atlas of Crayfish in Europe (ed. Souty-Grosset, C., Holdich, D. M., Noël, P. Y., Reynolds, J. D. and Haffner, P.), pp. 49129. Muséum National d'Histoire Naturelle, Paris, France.Google Scholar
Holdich, D. M., Reynolds, J. D., Souty-Grosset, C. and Sibley, P. J. (2009). A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowledge and Management of Aquatic Ecosystems 394–395, 11. doi: 10.1051/kmae/2009025.CrossRefGoogle Scholar
Jussila, J., Makkonen, J., Vainikka, A., Kortet, R. and Kokko, H. (2011). Latent crayfish plague (Aphanomyces astaci) infection in a robust wild noble crayfish (Astacus astacus) population. Aquaculture 321, 1720. doi: 10.1016/j.aquaculture.2011.08.026.CrossRefGoogle Scholar
Kokko, H., Koistinen, L., Harlıoğlu, M. M., Makkonen, J., Aydın, H. and Jussila, J. (2012). Recovering Turkish narrow clawed crayfish (Astacus leptodactylus) populations carry Aphanomyces astaci. Knowledge and Management of Aquatic Ecosystems 404, 12. doi: 10.1051/kmae/2012006.CrossRefGoogle Scholar
Kozubíková, E., Filipová, L., Kozák, P., Ďuriš, Z., Martín, M. P., Diéguez-Uribeondo, J., Oidtmann, B. and Petrusek, A. (2009). Prevalence of the crayfish plague pathogen Aphanomyces astaci in invasive American crayfishes in the Czech Republic. Conservation Biology 23, 12041213. doi: 10.1111/j.1523-1739.2009.01240.x.CrossRefGoogle ScholarPubMed
Kozubíková, E., Viljamaa-Dirks, S., Heinikainen, S. and Petrusek, A. (2011 a). Spiny-cheek crayfish Orconectes limosus carry a novel genotype of the crayfish plague agent Aphanomyces astaci. Journal of Invertebrate Pathology 108, 214216. doi: 10.1016/j.jip.2011.08.002.CrossRefGoogle Scholar
Kozubíková, E., Vrålstad, T., Filipová, L. and Petrusek, A. (2011 b). Re-examination of the prevalence of Aphanomyces astaci in North American crayfish populations in Central Europe by TaqMan MGB real-time PCR. Diseases of Aquatic Organisms 97, 113125. doi: 10.3354/dao02411.CrossRefGoogle ScholarPubMed
Lewis, S. D. (2002). Pacifastacus. In Biology of Freshwater Crayfish (ed. Holdich, D. M.), pp. 511540. Blackwell Science, Oxford, UK.Google Scholar
Makkonen, J., Jussila, J., Kortet, R., Vainikka, R. and Kokko, H. (2012). Differing virulence of Aphanomyces astaci isolates and elevated resistance of noble crayfish Astacus astacus against crayfish plague. Diseases of Aquatic Organisms 102, 129136. doi: 10.3354/dao02547.CrossRefGoogle ScholarPubMed
Makkonen, J., Strand, D. A., Kokko, H., Vrålstad, T. and Jussila, J. (2013). Timing and quantifying Aphanomyces astaci sporulation from the noble crayfish suffering from the crayfish plague. Veterinary Microbiology 162, 750755. doi: 10.1016/j.vetmic.2012.09.027.CrossRefGoogle ScholarPubMed
Matasová, K., Kozubíková, E., Svoboda, J., Jarošík, V. and Petrusek, A. (2011). Temporal variation in the prevalence of the crayfish plague pathogen, Aphanomyces astaci, in three Czech spiny-cheek crayfish populations. Knowledge and Management of Aquatic Ecosystems 401, 14. doi: 10.1051/kmae/2011029.CrossRefGoogle Scholar
Matthews, M. and Reynolds, J. D. (1990). Laboratory investigations of the pathogenicity of Aphanomyces astaci for Irish freshwater crayfish. Hydrobiologia 203, 121126. doi: 10.1007/BF00005680.CrossRefGoogle Scholar
Nylund, V. and Westman, K. (2000). The prevalence of crayfish plague (Aphanomyces astaci) in two signal crayfish (Pacifastacus leniusculus) populations in Finland. Journal of Crustacean Biology 20, 777785. doi: 10.1651/0278-0372(2000)020[0777:TPOCPA]2.0.CO;2.CrossRefGoogle Scholar
Oidtmann, B., Cerenius, L., Schmid, I., Hoffmann, R. and Söderhäll, K. (1999). Crayfish plague epizootics in Germany – classification of two German isolates of the crayfish plague fungus Aphanomyces astaci by random amplification of polymorphic DNA. Diseases of Aquatic Organisms 35, 235238. doi: 10.3354/dao035235.CrossRefGoogle Scholar
Oidtmann, B., Heitz, E., Rogers, D. and Hoffmann, R. W. (2002). Transmission of crayfish plague. Diseases of Aquatic Organisms 52, 159167. doi: 10.3354/dao052159.CrossRefGoogle ScholarPubMed
Oidtmann, B., Schaefers, N., Cerenius, L., Söderhäll, K. and Hoffmann, R. W. (2004). Detection of genomic DNA of the crayfish plague fungus Aphanomyces astaci (Oomycete) in clinical samples by PCR. Veterinary Microbiology 100, 269282. doi: 10.1016/j.vetmic.2004.01.019.CrossRefGoogle ScholarPubMed
Oidtmann, B., Geiger, S., Steinbauer, P., Culas, A. and Hoffmann, R. W. (2006). Detection of Aphanomyces astaci in North American crayfish by polymerase chain reaction. Diseases of Aquatic Organisms 72, 5364. doi: 10.3354/dao072053.CrossRefGoogle ScholarPubMed
Pârvulescu, L., Schrimpf, A., Kozubíková, E., Cabanillas Resino, S., Vrålstad, T., Petrusek, A. and Schulz, R. (2012). Invasive crayfish and crayfish plague on the move: first detection of the plague agent Aphanomyces astaci in the Romanian Danube. Diseases of Aquatic Organisms 98, 8594. doi: 10.3354/dao02432.CrossRefGoogle ScholarPubMed
Persson, M. and Söderhäll, K. (1983). Pacifastacus leniusculus (Dana) and its resistance to the parasitic fungus Aphanomyces astaci Schikora. Freshwater Crayfish 5, 292298.Google Scholar
Persson, M., Cerenius, L. and Söderhäll, K. (1987). The influence of haemocyte number on the resistance of the freshwater crayfish, Pacifastacus leniusculus Dana, to the parasitic fungus Aphanomyces astaci. Journal of Fish Diseases 10, 471477. doi: 10.1111/j.1365-2761.1987.tb01098.x.CrossRefGoogle Scholar
Petrusek, A., Filipová, L., Ďuriš, Z., Horká, I., Kozák, P., Policar, T., Štambergová, M. and Kučera, Z. (2006). Distribution of the invasive spiny-cheek crayfish (Orconectes limosus) in the Czech Republic. Past and present. Bulletin Français de la Pêche et de la Pisciculture 380–381, 903918. doi: 10.1051/kmae:2006030.CrossRefGoogle Scholar
Schäperclaus, W. (1935). Die Ursache der pestartigen Krebssterben. Zeitschrift für Fischerei 33, 343366.Google Scholar
Schikora, F. (1916). Die Wiederbevölkerung der deutschen Gewässer mit Krebsen. Emil Hübner Verlag, Bautzen, Germany.Google Scholar
Söderhäll, K. and Cerenius, L. (1999). The crayfish plague fungus: history and recent advances. Freshwater Crayfish 12, 1135.Google Scholar
Strand, D. A., Holst-Jensen, A., Viljugrein, H., Edvardsen, B., Klaveness, D., Jussila, J. and Vrålstad, T. (2011). Detection and quantification of the crayfish plague agent in natural waters: direct monitoring approach for aquatic environments. Diseases of Aquatic Organisms 95, 917. doi: 10.3354/dao02334.CrossRefGoogle ScholarPubMed
Strand, D. A., Jussila, J., Viljamaa-Dirks, S., Kokko, H., Makkonen, J., Holst-Jensen, A., Viljugrein, H. and Vrålstad, T. (2012). Monitoring the spore dynamics of Aphanomyces astaci in the ambient water of latent carrier crayfish. Veterinary Microbiology 160, 99107. doi: 10.1016/j.vetmic.2012.05.008.CrossRefGoogle ScholarPubMed
Svoboda, J., Kozubíková, E., Kozák, P., Kouba, A., Bahadir Koca, S., Diler, Ö., Diler, I., Policar, T. and Petrusek, A. (2012). PCR detection of the crayfish plague pathogen in narrow-clawed crayfish inhabiting Lake Eğirdir in Turkey. Diseases of Aquatic Organisms 98, 255259. doi: 10.3354/dao02445.CrossRefGoogle ScholarPubMed
Unestam, T. (1966). Studies on the crayfish plague fungus Aphanomyces astaci II. Factors affecting zoospores and zoospore production. Physiologia Plantarum 19, 11101119. doi: 10.1111/j.1399-3054.1966.tb07104.x.CrossRefGoogle Scholar
Unestam, T. (1969 a). On the adaptation of Aphanomyces astaci as a parasite. Physiologia Plantarum 22, 221235. doi: 10.1111/j.1399-3054.1969.tb07371.x.CrossRefGoogle Scholar
Unestam, T. (1969 b). Resistance to the crayfish plague in some American, Japanese and European crayfishes. Report of the Institute of Freshwater Research, Drottningholm 49, 202209.Google Scholar
Unestam, T. (1975). Defence reactions in and susceptibility of Australian and New Guinean freshwater crayfish to European-crayfish-plague fungus. Australian Journal of Experimental Biology and Medical Science 53, 349359. doi: 10.1038/icb.1975.40.CrossRefGoogle Scholar
Unestam, T. and Södehäll, K. (1977). Soluble fragments from fungal cell walls elicit defence reactions in crayfish. Nature, London 267, 4546. doi: 10.1038/267045a0.CrossRefGoogle ScholarPubMed
Vey, A., Söderhäll, K. and Ajaxon, R. (1983). Susceptibility of Orconectes limosus Raff. to the crayfish plague, Aphanomyces astaci Schikora. Freshwater Crayfish 5, 284291.Google Scholar
Viljamaa-Dirks, S., Heinikainen, S., Nieminen, M., Vennerström, P. and Pelkonen, S. (2011). Persistent infection by crayfish plague Aphanomyces astaci in a noble crayfish population – a case report. Bulletin of European Association of Fish Pathologists 31, 182188.Google Scholar
Vogt, G. (1999). Diseases of European freshwater crayfish, with particular emphasis on interspecific transmission of pathogens. In Crayfish in Europe as Alien Species. How to Make the Best of a Bad Situation? (ed. Gherardi, F. and Holdich, D. M.), pp. 87103. A. A. Balkema, Rotterdam, the Netherlands.Google Scholar
Vrålstad, T., Knutsen, A. K., Tengs, T. and Holst-Jensen, A. (2009). A quantitative TaqMan MGB real-time polymerase chain reaction based assay for detection of the causative agent of crayfish plague Aphanomyces astaci. Veterinary Microbiology 137, 146155. doi: 10.1016/j.vetmic.2008.12.022.CrossRefGoogle ScholarPubMed
Vrålstad, T., Johnsen, S. I., Fristad, R. F., Edsman, L. and Strand, D. (2011). Potent infection reservoir of crayfish plague now permanently established in Norway. Diseases of Aquatic Organisms 97, 7583. doi: 10.3354/dao02386.CrossRefGoogle ScholarPubMed
Supplementary material: File

Svoboda Supplementary Material

Appendix

Download Svoboda Supplementary Material(File)
File 862.2 KB