Skip to main content Accessibility help

Temperature during the free-living phase of an ectoparasite influences the emergence pattern of the infective phase

  • M. AMAT-VALERO (a1), M. A. CALERO-TORRALBO (a1) and F. VALERA (a1)


Understanding the population dynamics and co-evolution of host–parasite systems requires detailed knowledge of their phenology which, in turn, requires a deep knowledge of the effect of abiotic factors on the life cycles of organisms. Temperature is known to be a key environmental influence that participates in the regulation of diapause. Yet, not much is known about the effect of temperature on the free-living stages of true parasites and how it may influence host–parasite interactions. Here we experimentally study the effect of ambient temperature on overwintering pupae of Carnus hemapterus (Diptera, Carnidae), an ectoparasitic fly of various bird species. We also test whether chilling is a prerequisite for completion of diapause in this species. In the course of three winter seasons we experimentally exposed carnid pupae from nests of various host species to spring temperatures with and without chilling and recorded the emergence patterns in experimental and control groups. Experimental groups showed an advanced emergence date, a lower emergence rate and, consequently, a protracted emergence period. Chilling had no obvious effect on the start of emergence but it did advance the mean emergence date, shortened the length of the emergence period when compared with the control treatment and increased the emergence rate when compared with the spring treatment. This study identifies an environmental cue, namely temperature during the free-living stage, affecting the emergence of a widespread parasite and demonstrates the plasticity of diapause in this parasite. Our findings are of potential significance in understanding host–parasite interactions.


Corresponding author

*Corresponding author: Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain. E-mail:


Hide All
Amat-Valero, M., Vaclav, R., Martínez, T. and Valera, F. (2012). Mixed life-history strategies in a local population of the ectoparasitic fly Carnus hemapterus. Parasitology 139, 10451053.
Anderson, J. F. and Kaya, H. K. (1975). Influence of temperature on diapause termination in Ooencyrtus ennomus, an ELM spanworm egg parasitoid. Annals of the Entomological Society of America 68, 671672.
Anderson, R. L. (1970). Temperature acclimation in Tribolium confusum and Musca domestica: rate of acclimation measured at locomotory, metabolic and enzyme levels. Journal of Insect Physiology 17, 22052219.
Bequaert, J. (1942). Carnus hemapterus Nitzsch, an ectoparasitic fly of birds, new to America (Diptera). Bulletin of the Brooklyn Entomological Society 37, 140149.
Biron, D., Langlet, X., Boivin, G. and Brunel, E. (1998). Expression of early and late emerging phenotypes in both diapausing and non-diapausing Delia radicum L. pupae. Entomologia Experimentalis et Applicata 87, 119124.
Blanckenhorn, W. U. (1998). Adaptive phenotypic plasticity in growth, development, and body size in the yellow dung fly. Evolution 52, 13941407.
Broufas, G. D. and Koveos, D. S. (2000). Threshold temperature for post-diapause development and degree-days to hatching of winter eggs of the European red mite (Acari: Tetranychidae) in Northern Greece. Environmental Entomology 29, 710713.
Bush, A. O., Fernandez, J. C. and Esch, G. W. (2001). Parasitism: the Diversity and Ecology of Animal Parasites. Cambridge University Press, New York, USA.
Calero-Torralbo, M. A. and Valera, F. (2008). Synchronization of host–parasite cycles by means of diapause: host influence and parasite response to involuntary host shifting. Parasitology 135, 13431352.
Calero-Torralbo, M. A., Václav, R. and Valera, F. (2013). Intra-specific variability in life-cycle synchronization of an ectoparasitic fly to its avian host. Oikos 122, 274284.
Cramp, S. and Perrins, C. M. (1994). Handbook of the Birds of Europe, the Middle East and North Africa, Vol. VIII. Oxford University Press, Oxford, UK.
Danks, H. V. (1987). Insect Dormancy: an Ecological Perspective. Biological Survey of Canada No. 1, Ottawa, ON, Canada.
Dawson, R. D., Hillen, K. K. and Whitworth, T. L. (2005). Effects of experimental variation in temperature on larval densities of parasitic Protocalliphora (Diptera: Calliphoridae) in nests of tree swallows (Passeriformes: Hirundinidae). Environmental Entomology 34, 563568.
Feder, J. L., Stolz, U., Lewis, K. M., Perry, W., Roethele, J. B. and Rogers, A. (1997). The effects of winter length on the genetics of apple and hawthorn races of Rhagoletis pomonella (Diptera: Tephritidae). Evolution 51, 18621876.
Gray, D. R., Ravlin, F. W. and Braine, J. A. (2001). Diapause in the gypsy moth: a model of inhibition and development. Journal of Insect Physiology 47, 173184.
Grimaldi, D. (1997). The bird flies, genus Carnus: species revision, generic relationships and a fossil Meoneura in amber (Diptera: Carnidae). American Museum Novitates 3190, 130.
Guiguen, C., Launay, H. and Beaucournu, J. C. (1983). Ectoparasites des oiseaux en Bretagne. I. Rèpartition et écologie d'un diptère hematophage nouveau pour la France: Carnus hemapterus Nitzsch. Revue Francaise d'Entomologie 5, 5462.
Hance, T., van Baaren, J., Vernon, P. and Boivin, G. (2007). Impact of extreme temperatures on parasitoids in a climate change perspective. Annual Review of Entomology 52, 107126.
Hodek, I. (1983). Role of environmental factors and endogenous mechanisms in the seasonality of reproduction in insects diapausing as adults. Series Entomologica (Dordrecht) 23, 933.
Hodek, I. (1996). Diapause development, diapause termination and the end of diapause. European Journal of Entomology 93, 475487.
Hodek, I. (2002). Controversial aspects of diapause development. European Journal of Entomology 99, 163173.
Hopper, K. R. (1999). Risk-spreading and bet-hedging in insect population biology. Annual Review of Entomology 44, 535560.
Kato, Y. and Sakate, S. (1981). Studies on summer diapause in pupae of Antheraea yamamai (Lepidoptera, saturniidae).·3. Influence of photoperiod in the larval stage. Applied Entomology and Zoology 16, 499500.
Kemp, W. P. and Bosch, J. (2005). Effect of temperature on Osmia lignaria (Hymenoptera: Megachilidae) prepupa–adult development, survival, and emergence. Journal of Economic Entomology 98, 19171923.
Kostal, V. (2006). Eco-physiological phases of insect diapause. Journal of Insect Physiology 52, 113127.
Langer, A. and Hance, T. (2000). Overwintering strategies and cold hardiness of two aphid parasitoid species (Hymenoptera : Braconidae : Aphidiinae). Journal of Insect Physiology 46, 671676.
Leather, S. R., Walters, K. F. A. and Bale, J. S. (1993). The Ecology of Insect Overwintering. Cambridge University Press, Cambridge, UK.
Lees, A. D. (1950). The physiology of diapause. Science Progress 38, 735742.
Liker, A., Markus, M., Vozár, A., Zemankovics, E. and Rózsa, L. (2001). Distribution of Carnus hemapterus in a starling colony. Canadian Journal of Zoology 79, 574580.
Masaki, S. (2002). Ecophysiological consequences of variability in diapause intensity. European Journal of Entomology 99, 143154.
Masaki, S., Ando, Y. and Watanabe, A. (1979). High temperature and diapause termination in the eggs of Teleogryllus commodus (Orthoptera: Gryllidae). Kontyu 47, 493504.
Menu, F., Roebuck, J. P. and Viala, M. (2000). Bet-hedging diapause strategies in stochastic environments. American Naturalist 155, 724734.
Merino, S. and Potti, J. (1996). Weather dependent effects of nest ectoparasites on their bird hosts. Ecography 19, 107113.
Milonas, P. G. and Savopoulou-Soultani, M. (2000). Diapause induction and termination in the parasitoid Colpoclypeus florus (Hymenoptera : Eulophidae): role of photoperiod and temperature. Annals of the Entomological Society of America 93, 512518.
Nechols, J. R., Tauber, M. J. and Helgesen, R. G. (1980). Environmental-control of diapause and post-diapause development in Tetrastichus julis (Hymenoptera, eulophidae), a parasite of the cereal leaf beetle, Oulema melanopus (Coleoptera, chrysomelidae). Canadian Entomologist 112, 12771284.
Pitts, K. M. and Wall, R. (2006). Cold shock and cold tolerance in larvae and pupae of the blow fly, Lucilia sericata. Physiological Entomology 31, 5762.
Poulin, R. (1998). Evolutionary Ecology of Parasites. Chapman and Hall, London, UK.
Randolph, S. E. (2004). Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors. Parasitology 129, S37S65.
Reiczigel, J. and Rozsa, L. (2005). Quantitative Parasitology 3.0. Budapest, Hungary.
Reiczigel, J., Abonyi-Tóth, Z. and Singer, J. (2008). An exact confidence set for two binomial proportions and exact unconditional confidence intervals for the difference and ratio of proportions. Computational Statistics and Data Analysis 52, 50465053.
Roulin, A. (1998). Cycle de reproduction et abundance du diptére parasite Carnus hemapterus dans le niches de chouettes effraies Tyto alba. Alauda 66, 265272.
Shimoda, M. and Kiuchi, M. (1997). Effect of chilling of diapause pupa on adult emergence in the sweet potato hornworm, Agrius convolvuli (Lepidoptera; Sphingidae). Applied Entomology and Zoology 32, 617624.
Tauber, M. J. and Tauber, C. A. (1975). Natural daylengths regulate insect seasonality by two mechanisms. Nature 258, 711712.
Tauber, M. J., Tauber, C. A. and Masaki, S. (1986). Seasonal Adaptation of Insects. Oxford University Press, Oxford, UK.
Teixeira, L. A. F. and Polavarapu, S. (2002). Phenological differences between populations of Rhagoletis mendax (Diptera: Tephritidae). Environmental Entomology 31, 11031109.
Teixeira, L. A. F. and Polavarapu, S. (2005). Evidence of a heat-induced quiescence during pupal development in Rhagoletis mendax (Diptera: Tephritidae). Environmental Entomology 34, 292297.
Thomas, M. B. and Blanford, S. (2003). Thermal biology in insect-parasite interactions. Trends in Ecology and Evolution 18, 344350.
Václav, R., Valera, F. and Martínez, T. (2011). Social information in nest colonisation and occupancy in a long-lived, solitary breeding bird. Oecologia 165, 617627.
Valera, F., Casas-Crivillé, A. and Hoi, H. (2003). Interspecific parasite exchange in a mixed colony of birds. Journal of Parasitology 89, 245250.
Valera, F., Casas-Crivillé, A. and Calero-Torralbo, M. A. (2006). Prolonged diapause in the ectoparasite Carnus hemapterus (Diptera: Cyclorrapha, Acalyptratae) – how frequent is it in parasites? Parasitology 133, 179186.
van Dijk, J. and Morgan, E. R. (2008). The influence of temperature on the development, hatching and survival of Nematodirus battus larvae. Parasitology 135, 269283.
von Ende, C. N. (2001). Repeated-measures analysis: growth and other time dependent measures. In The Design and Analysis of Ecological Experiments (ed. Scheiner, S. and Gurevitch, I.), pp. 134157. Oxford University Press, New York, USA.
Waldbauer, G. P. (1978). Phenological Adaptation and the Polymodal Emergence Patterns of Insects. Springer-Verlag, New York, USA.
Waldbauer, G. P. and Sternburg, J. G. (1986). The bimodal emergence curve of adult Hyalophora cecropia: conditions required for the initiation of development by second mode pupae. Entomologia Experimentalis et Applicata 41, 315317.
Wall, R., French, N. and Morgan, K. L. (1992). Effects of temperature on the development and abundance of the sheep blowfly Lucilia sericata (Diptera: Calliphoridae). Bulletin of Entomological Research 82, 125131.
Wharton, D. A. (1999). Parasites and low temperatures. Parasitology 119(Suppl.), S7S17.
William, C. M. and Adkisson, P. L. (1964). Physiology of insect diapause. XIV. An endocrine mechanism for the photoperiod control of pupal diapause in the Oak silkworm, Anthieraea pernyi. Biological Bulletin 127, 511525.
Zar, J. (1984). Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, NJ, USA.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed